OOFEM Element Library Manual

Bořek Patzák
Czech Technical University
Faculty of Civil Engineering
Department of Structural Mechanics
Thákurova 7, 16629 Prague, Czech Republic
April 8, 2021

Contents

1 Introduction 3
2 Elements for Structural Analysis (SM Module) 3
2.1 Truss Elements 3
2.1.1 Truss 1D element 3
2.1.2 Truss 2D element 3
2.1.3 Truss 3D element 4
2.2 Beam Elements 5
2.2.1 Beam2d element 5
2.2.2 Beam3d element 6
2.3 Lattice elements 8
2.3.1 Lattice2d element 8
2.3.2 Lattice2dBoundary element 8
2.3.3 Lattice3d element 9
2.3.4 Lattice3dBoundary element 9
2.3.5 Latticelink3d 10
2.3.6 Latticelink3dboundary 11
2.4 Plane Stress Elements 13
2.4.1 PlaneStress2d 13
2.4.2 QPlaneStress2d 14
2.4.3 TrPlaneStress2d 14
2.4.4 QTrPlStr 15
2.4.5 TrPlaneStrRot 15
2.4.6 TrPlaneStressRotAllman 17
2.5 Plane Strain Elements 20
2.5.1 Quad1PlaneStrain 20
2.5.2 TrplaneStrain 20
2.6 Plate \& Shell Elements 22
2.6.1 DKT Element 22
2.6.2 QDKT Element 22
2.6.3 CCT Element 22
2.6.4 CCT3D Element 23
2.6.5 RerShell Element 23
$2.6 .6 \quad$ tr shell01 element 24
2.6.7 tr_shell02 element 25
2.6.8 Quad1Mindlin Element 25
2.6.9 Tr2Shell7 Element 25
2.6.10 MITC4Shell Element 26
2.6.11 Sub-soil Elements 27
2.6.12 quad1plateSubsoil Element 27
2.6.13 Tria1PlateSubSoil Element 27
2.7 Axisymmetric Elements 32
2.7.1 Axisymm3d element 32
2.7.2 Q4axisymm element 32
2.7.3 L4axisymm element 33
2.8 3d Continuum Elements 35
2.8.1 LSpace element 35
2.8.2 LSpaceBB element 35
2.8.3 QSpace element 35
2.8.4 LTRSpace element 36
2.8.5 QTRSpace element 36
2.8.6 LWedge element 36
2.8.7 QWedge element 37
2.9 Interface elements 40
2.9.1 IntElPoint, Interface1d elements 40
2.9.2 IntElLine1, Interface2dlin elements 40
2.9.3 IntElLine2, Interface2dquad elements 41
2.9.4 IntEISurfTr1, Interface3dtrlin elements 41
2.9.5 IntEISurfQuad1 element 43
2.10 Free warping analysis elements 45
2.10.1 TrWarp 45
2.11 XFEM elements 46
2.11.1 TrPlaneStress2dXFEM element 46
2.11.2 PlaneStress2dXfem element 46
2.12 Iso Geometric Analysis based (IGA) elements 48
2.13 Special elements 49
2.13.1 LumpedMass element 49
2.13.2 Spring element 49
2.14 Geometric nonlinear analysis 51
3 Elements for Transport problems (TM Module) 52
3.1 2D Elements 52
3.1.1 Tr1ht element 52
3.1.2 Tr1mt element 52
3.1.3 Tr1hmt element. 52
3.1.4 Quad1ht element 53
3.1.5 Quad1mt element 53
3.1.6 Quad1hmt element 53
3.1.7 QQuad1ht element 54
3.1.8 QQuad1mt element 54
3.1.9 QQuad1hmt element 54
3.2 Axisymmetric Elements 55
3.2.1 Quadaxisym1ht element 55
3.2.2 Traxisym1ht element 55
3.3 3D Elements 56
3.3.1 Tetrah1ht - tetrahedral 3D element 56
3.3.2 Brick1ht - hexahedral 3D element 56
3.3.3 Brick1hmt - hexahedral 3D element 57
3.3.4 QBrick1ht - quadratic hexahedral 3D element 57
3.3.5 QBrick1mt - quadratic hexahedral 3D element 57
3.3.6 QBrick1hmt - quadratic hexahedral 3D element 58
4 Elements for Fluid Dynamics problems (FM Module) 59
4.1 Stokes' Flow Elements 59
4.1.1 Tr21Stokes element 59
4.1.2 Tet21Stokes element 59
4.1.3 Hexa21Stokes element 59
4.1.4 Tr1BubbleStokes element 60
4.1.5 Tet1BubbleStokes element 60
4.2 2D CBS Elements 62
4.2.1 Tr1CBS element 62
4.3 2D SUPG/PSGP Elements 63
4.3.1 Tr1SUPG element 63
4.3.2 Tr21SUPG element 63
4.3.3 Tr1SUPGAxi element 64
4.4 3D SUPG/PSGP Elements 66
4.4.1 Tet1_3D_SUPG element 66

List of Figures

	Truss2d element in (x,z) plane.	3
2	Beam2d element. Definition of local c.s.(a) and definition of local end forces and local element	
	dofs (b).	5
	Beam3d element. Definition of local c.s., local end forces and local element dofs numbering.	6
4	Lattice2d element. Node numbering, DOF numbering and definition of integration point C.	8
5	Lattice2dboundary element. Elements with cross boundary of periodic cell use DOFs of node	
	inside cell and average strain values of periodic cell.	
6	Lattice3d element. Node numbering, DOF numbering, cross-section vertices and local coordinate	
	system at integration point C. .	10
7	Lattice3dboundary element. Elements with cross boundary of periodic cell use DOFs of node	
	inside cell and average strain values of periodic cell.	11
8	PlaneStress2d element. Node numbering, edge numbering and definition of local edge c.s.(a).	13
9	QPlaneStress2d element - node numbering.	14
10	TrPlaneStress2d element - node and side numbering.	15
11	QTrPlStr element - node and side numbering.	15
12	Quad1PlaneStrain element. Node numbering, Side numbering and definition of local edge c.s.(a).	20
13	TrplaneStrain element - node and side numbering.	21
14	Geometry of tr_shell01 element. .	24
15	LSpace element (Node numbers in black, side numbers in blue, and surface numbers in red).	35
16	QSpace element.	36
17	LTRSpace element. Definition and node numbering convention.	37
18	QTRSpace element. Definition and node numbering convention.	37
19	LWedge element. Node numbering convention in black, edge numbering in blue and face	
	numbering in red.	38
20	QWedge element. Node numbering convention in black, edge numbering in blue and face	
	numbering in red.).	38
21	Interface2dlin element with linear interpolation. Definition and node numbering convention	41
22	Interface2dquad element with quadratic interpolation. Definition and node numbering convention	42
23	Interface3dtrlin element with linear interpolation. Definition and node numbering convention	43
24	IntElSurfQuad1 element with linear interpolation. Definition and node numbering convention	43
25	Tr1ht element - node and side numbering.	52
26	Quad1ht element. Node numbering, Side numbering and definition of local edge c.s.(a).	53
27	Brick1ht element. Node numbers are in black, side numbers are in blue, and surface numbers	
	are in red.	56
	Hexa21Stokes element. Node numbering and face numbering.	60
29	Tr1CBS element. Node numbering, Side numbering and definition of local edge c.s.(a).	62
30	Tr1SUPG element. Node numbering, Side numbering and definition of local edge c.s.(a).	63
31	Tr21SUPG element - node and side numbering. .	
	Tr1SUPGAxi element. Node numbering, Side numbering and definition of local edge c.s.(a).	65
33	Tet1_3D_SUPG element.	66

1 Introduction

In this manual the detailed description of available elements is given. The actual availability of particular elements depends on OOFEM configuration. Elements are specified using element records, which are part of oofem input file. The general format of element record is described in OOFEM input manual.

Every element is described in a separate section. The section includes the "element keyword", which determines the element type in element record, approximation and interpolation characteristics, required cross section properties (which are summarized in "CS properties" part), and a summary of element features. The "Load" section contains useful information about the types of loadings supported by particular elements.

2 Elements for Structural Analysis (SM Module)

2.1 Truss Elements

2.1.1 Truss 1D element

Represents linear isoparametric truss element in 1D. The elements are assumed to be located along the x-axis. Requires cross section area to be specified. The element features are summarized in Table 1.

Keyword	truss1d
Description	1D truss element
Specific parameters	-
Unknowns	Single dof (u-displacement) is required in each node
Approximation	Linear approximation of displacement and geometry
Integration	Exact
Features	Full dynamic analysis support, Full nonlocal constitutive support, Adaptivity support Area is required Body loads are supported. Boundary loads are not sup- ported in current implementation
Loads	Reliable
Status	Croperties

Table 1: truss1d element summary

2.1.2 Truss 2D element

Two node linear isoparametric truss element for 2D analysis. The element geometry can be specified in (x, z), (x, y), or (y, z) plane. The element features are summarized in Table 2 .

Figure 1: Truss2d element in (x, z) plane.
truss2d element summarytruss2dsummary

2.1.3 Truss 3D element

Two node linear isoparametric truss element for 3D analysis. The element geometry is specified in ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) plane. The element features are summarized in Table 3.

Keyword Description Specific parameters	truss2d 2 D truss element $[$ cs \#(in) $]$
Parameters	cs: this parameter can be used to change default definition plane. The supported values of cs are following: 0 for (x, z) plane (default) 1 for (x,y) plane, and 3 for (y,z) plane. Two dofs representing displacements in definition plane are required in each node. The element can be used in different planes, default definition plane is (x,z). The parameter cs can be used to change default definition plane.
Unknowns	Linear approximation of displacements and geometry. Exact. Full dynamic analysis support. Full nonlocal constitutive support. cross section area should be provided. Edge loads are supported, Edge number should be equal to 1
Approximation Integration Features	
CS properties	
Loads	Reliable

Table 2: truss2d element summary

Keyword	truss3d
Description	3D truss element
Specific parameters	-
Unknowns	Three displacement DOFs (in x, y, and z directions) are required in each node.
Approximation	Linear approximation of displacements and geometry.
Integration	Exact. Features
Full dynamic analysis support. Full nonlocal constitutive	
support.	
Cross propertion area should be provided.	
Status	Reliable

Table 3: truss3d element summary

2.2 Beam Elements

2.2.1 Beam2d element

Beam element for 2D analysis, based on Timoshenko hypothesis. Structure should be defined in x, z plane. The internal condensation of arbitrary DOF is supported and is performed in local coordinate system. On output, the local end displacement and local end forces are printed. The element features are summarized in Table 4.

Figure 2: Beam2d element. Definition of local c.s.(a) and definition of local end forces and local element dofs (b).
$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { Keyword } \\ \text { Description } \\ \text { Specific parameters }\end{array} & \begin{array}{l}\text { beam2d } \\ \text { 2D beam element } \\ \text { dofstocondense \#(ia)] }\end{array} \\ \hline \text { Parameters } & \begin{array}{l}\text { dofstocondense: allows to specify local element dofs that } \\ \text { will be condensed. The numbering of local element dofs is } \\ \text { shown in fig. 2, The size of this array should be equal to } \\ \text { number of local element dofs (6) and nonzero value indicates } \\ \text { the corresponding dof will be condensed. } \\ \text { Three dofs (u-displacement, w-displacement, y-rotation) are } \\ \text { required in each node. } \\ \text { Cubic approximations of lateral displacement and rotation } \\ \text { are used. For longitudinal displacement the linear one is }\end{array} \\ \text { Approximation } & \begin{array}{l}\text { assumed. } \\ \text { Exact. }\end{array} \\ \text { Integration } & \begin{array}{l}\text { Full dynamic analysis support. Linear stability analysis } \\ \text { support. } \\ \text { Area,inertia moment along y-axis (iy parameter) and equiva- } \\ \text { lent shear area (shearareaz parameter) should be specified. } \\ \text { Coads properties }\end{array} \\ \begin{array}{l}\text { Constant and linear edge loads are supported, shear influ- } \\ \text { ence is taken into account. Edge number should be equal } \\ \text { to 1. Temperature load is supported, the first coefficient of } \\ \text { temperature load represent mid-plane temperature change, }\end{array} \\ \text { the second one represent difference between temperature } \\ \text { change of local z+ and local z- surfaces of beam (in local co- }\end{array}\right\}$

Table 4: beam2d element summary

2.2.2 Beam3d element

Beam element for 3D linear analysis, based on Timoshenko hypothesis. The internal condensation of arbitrary DOF is supported and is performed in local coordinate system. On output, the local end-displacement and local end-forces are printed. Requires the local coordinate system to be chosen according to main central axes of inertia. Local element coordinate system is determined by the following rules:

1. let first element node has following coordinates $\left(x_{i}, y_{i}, z_{i}\right)$ and the second one $\left(x_{j}, y_{j}, z_{j}\right)$,
2. direction vector of local x -axis is then $\mathbf{a}_{1}=\left(x_{j}-x_{i}, y_{j}-y_{i}, z_{j}-z_{i}\right)$,
3. local y-axis direction vector lies in plane defined by local x -axis direction vector (\mathbf{a}_{1}) and given point (k-node with coordinates $\left(x_{k}, y_{k}, z_{k}\right)$) - so called reference node,
4. local z -axis is then determined as vector product of local x -axis direction vector (\mathbf{a}_{1}) by vector ($x_{k}-$ $\left.x_{i}, y_{k}-y_{i}, z_{k}-z_{i}\right)$,
5. local y-axis is then determined as vector product of local z -axis direction vector by local x -axis direction vector.

The element features are summarized in Table 5

Figure 3: Beam3d element. Definition of local c.s., local end forces and local element dofs numbering.

Keyword	beam3d
Description	3D beam element
Specific parameters	refnode \#(in) ${ }^{\text {d }}$ dofstocondense \#(ia) ${ }^{\text {] }}$
Parameters	refnode: sets reference node to determine the local coordinate system of element. dofstocondense: allows to specify local element dofs that will be condensed. The numbering of local element dofs is shown in fig. 3. The size of this array should be equal to number of local element dofs (12) and nonzero value indicates the corresponding dof will be condensed.
Unknowns	Six dofs ($\mathrm{u}, \mathrm{v}, \mathrm{w}$-displacements and $\mathrm{x}, \mathrm{y}, \mathrm{z}$-rotations) are required in each node.
Approximation	Cubic approximations of lateral displacement and rotation (along local y,z axes) are used. For longitudinal displacement and the rotation along local x -axis (torsion) the linear approximations are assumed.
Integration	Exact.
Features	Full dynamic analysis support. Linear stability analysis support.
CS properties	Area, inertia moment along y and z axis (iy and iz parameters), torsion inertia moment (ik parameter) and either cross section area shear correction factor (beamshearcoeff parameter) or equivalent shear areas (shearareay and shearareaz parameters) are required. These cross section properties are assumed to be defined in local coordinate system of element.
Loads	Constant and linear edge loads are supported. Edge number should be equal to 1 . Temperature load is supported, the first coefficient of temperature load represent mid-plane temperature change, the second one represent difference between temperature change of local $z+$ surface and local $z-$ surface surface of beam and the third one represent difference between temperature change of local $y+$ surface and local y surface of beam. Requires the "thick" (measured in direction of local z axis) and "width" (measured in direction of local y axis) cross section model properties to be defined.
Status	Reliable

Table 5: beam3d element summary

2.3 Lattice elements

2.3.1 Lattice2d element

Represents two-node lattice element. Each node has 3 degrees of freedom. The element is based on the Rigid Body Spring Model originally developed by Kawai and later delveloped by Bolander for modelling fracture in concrete. The main idea is to model the elastic and inelastic response of a connection of two nodes by a set of springs located at the contact facet of two rigid bodies, which is the mid-cross-section of the element. Displacement jumps are computed at the mid-cross-section, which are smeared out over the element length in the form of strains. The element is defined in x,y plane (see Figure 4). The element features are summarized in Table 6.

Figure 4: Lattice2d element. Node numbering, DOF numbering and definition of integration point C.

Keyword Description Specific parameters	lattice2d 2d lattice element thick \#(rn) width $\#_{(r n)}$ gpCoords $\#_{(\text {ra })}$
Parameters	thick: defines the out of plane $(z$-direction) thickness width: defines the width of the midpoint cross-section in the $x-y$ plane with the point C at its centre gpCooords: array of the coordinates of the integration point C in the global coordinate system Three dofs $(u$-displacement, v-displacement, w-rotation) are required in each node.

Table 6: lattice2d element summary

The theory of lattice2d is described in the paper "P. Grassl and M. Jirásek. Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension. International Journal of Solids and Structures. Volume 47, Issues 7-8, pp. 957-968, 2010."

2.3.2 Lattice2dBoundary element

Represents three-node lattice element for boundary of 2 d periodic cells. The first two nodes have 3 degrees of freedom as for the element lattice2d. The third node is used to control the loading of the periodic cell. It has three components which are displacements, which are produces of the macroscopic (average) strain components and length of the peridodic cell as $a E_{x x}, b E_{x x}$ and $b G_{x y}$ and the length of the periodic cell. The DOFs of the node that lies outside the periodic are computed from those of the periodic image inside the cell and the DOFs at the third node (Figure 5). The coordinates x and y of the third node are the lengths a and b of the periodic cell, respectively. The element is defined in x, y plane. The strain components at the additional node have the meaning of average strains in the periodic cell. The specific input parameters for this element in addition to those used for lattice2d are shown in Table 7 .

Figure 5: Lattice2dboundary element. Elements with cross boundary of periodic cell use DOFs of node inside cell and average strain values of periodic cell.

Keyword	lattice2dboundary		
Description			
Specific parameters	2d lattice boundary element		
location \#(in)		,	location: number between 1 and 8 which specifies the
:---			
location of the node with respect to the periodic cell.			
Parameters			
Unknowns DOFs are required, which are u-displacement, v -			
displacement and w-rotation at nodes 1 and 2, and $a E_{x x}$,			
$b E_{y y}$ and $b G_{x y}$ at node 3.			
Reference			
4			

Table 7: lattice2dboundary element summary

2.3.3 Lattice3d element

Lattice3d represents a two-node 3d lattice element. Each node has six degrees of freedom as shown in Figure 6 The element is based on the Rigid Body Spring Model originally developed by Kawai and later delveloped by Bolander for modelling fracture in concrete. The main idea is to model the elastic and inelastic response of a connection of two nodes by a set of springs located at the contact facet of two rigid bodies, which is the mid-cross-section of the element. The properties of the mid-cross-section are internally computed from its vertices which are given as input in the global coordinate sytem. Displacement jumps are computed at the mid-cross-section, which are smeared out over the element length in the form of strains. The input parameters for this element are shown in Table 8

2.3.4 Lattice3dBoundary element

This element represents a three-noded 3d lattice element for boundaries of 3d periodic cells. The first two nodes have 6 degrees of freedom as for the element lattice3d. The third node is used to control the loading of the periodic cell using three normal $\left(a E_{x x}, b E_{y y}\right.$ and $\left.z E_{z z}\right)$ and three shear strain $\left(c G_{y z}, c G_{x z}, b G_{x y}\right)$ components. Here, a, b and c are the three dimensions of the periodic cell. The DOFs of the node that lies outside the periodic are computed from those of the periodic image inside the cell and the DOFs at the third node (Figure 7). The connection between periodic nodes is defined as

$$
\begin{equation*}
\mathrm{x}^{\prime}=\mathrm{Mx} \tag{1}
\end{equation*}
$$

Figure 6: Lattice3d element. Node numbering, DOF numbering, cross-section vertices and local coordinate system at integration point C.

Keyword Description Specific parameters	lattice3d 3d lattice element polycoords \#(ra) couplingflag \#(in) couplingnumbers \#(ra) pressures \#(ra) mlength \#(rn)
Parameters	polycooords: array of the coordinates of the vertices of the mid-cross-section of the lattice element in the global coordinate system. couplingflag: flag (optional parameter. Default is 0) which activates coupling with a transport lattice element. couplingnumbers: array of numbers of transport lattice elements (optional parameter), which are coupled with the 3 d lattice element. pressures: array of pressure values (optional parameter), which are used to consider influence of fluid pressure on mechanical response. mlength: minimum length (optional parameter) is used to check if the cross-section of the element is not too small. Default value is $1 . e-20$.
Unknowns	Six dofs (u-displacement, v-displacement, w-displacement, u-rotation, v-rotation and w-rotation) are required in each node.
Reference	

Table 8: lattice3d element summary

Here, \mathbf{x}^{\prime} and \mathbf{x} are the nodes inside and outside, respectively, and \mathbf{M} is the translation matrix, for which the input is provided in the form of a location parameter as shown in Table 9.

2.3.5 Latticelink3d

This element represents a two-node 3d link element connecting 3d beam and 3d lattice elements. Each node has six degrees of freedom. The input parameters for this element are shown in Table 10 .

Figure 7: Lattice3dboundary element. Elements with cross boundary of periodic cell use DOFs of node inside cell and average strain values of periodic cell.
\(\left.\left.$$
\begin{array}{|l|l|}\hline \text { Keyword } & \text { lattice3dboundary } \\
\text { Description } & \text { 3d lattice boundary element } \\
\text { Specific parameters } & \text { location \#(in) }\end{array}
$$ \right\rvert\, \begin{array}{l}location: array of two numbers between number between

1 and 26, which specifies the location of the two nodes with

respect to the 3d periodic cell.\end{array}\right]\)| Six dofs (u-displacement, v-displacement, w-displacement, |
| :--- |
| U-rotation, v-rotation and w-rotation) are required in each |
| of the first two node. Node 3 requires the 6 quantities to |
| control the periodic cell $a E_{x x}, b E_{y y}, z E_{z z}, c G_{y z}, c G_{x z}$ and |
| $b G_{x y}$ |
| Reference |
| 6 |

Table 9: lattice3dboundary element summary

Keyword	latticelink3d
Description	3d lattice link element
Specific parameters	length \#(rn) diameter \#(rn) dirvector \#(ra) l_end \#(rn)
Parameters	length: bond length diameter: diameter dirvector: direction vector in which bond-slip occurs. l_end: array of pressure values (optional parameter), which are used to consider influence of fluid pressure on mechanical response. mlength: minimum length (optional parameter) is used to check if the cross-section of the element is not too small. Default value is $1 . \mathrm{e}-20$.
Unknowns	Six dofs (u-displacement, v-displacement, w-displacement, u-rotation, v-rotation and w-rotation) are required in each node.
Reference	

Table 10: latticelink3d element summary

2.3.6 Latticelink3dboundary

Represents three-node 3d boundary link element connecting 3d beam and 3d lattice elements. The first two nodes have the same meaning as for latticelink3d. The third node is used to control the loading of the periodic
cell using three normal (xx, yy and zz) and three shear strain ($\mathrm{yz}, \mathrm{xz}, \mathrm{xy}$) components. The specific input parameters for this element in addition of those for latticelink3d are shown in Table 11

Keyword	latticelink3dboundary
Description	3d lattice link boundary element
Specific parameters	location \#(in) rn
Parameters	location:
Unknowns	Six dofs $(u$-displacement, v-displacement, w-displacement, u-rotation, v-rotation and w-rotation) are required in each Reference
	node.
	$7]$

Table 11: latticelink3dboundary element summary

2.4 Plane Stress Elements

2.4.1 PlaneStress2d

Represents isoparametric four-node quadrilateral plane-stress finite element. Each node has 2 degrees of freedom. Structure should be defined in x, y plane. The nodes should be numbered anti-clockwise (positive rotation around z -axis). The element features are summarized in Table 12

The generalization of this element, that can be positioned arbitrarily in space is linquad3dplanestress element. This element requires 3 displacement degrees of freedon in each node and assumes, that the element geometry is flat, i.e. all nodes are in the same plane. The element features are summarized in Table 13 .

Figure 8: PlaneStress2d element. Node numbering, edge numbering and definition of local edge c.s.(a).

Keyword	planestress2d
Description	2D quadrilateral element for plane stress analysi
Specific parameters	[NIP \# (in) ${ }^{\text {] }}$
Parameters	NIP: allows to set the number of integration po
Unknowns	Two dofs (u-displacement, v-displacement) are required in each node.
Approximation	Linear approximation of displacements and geometry.
Integration	Integration of membrane strain terms using Gauss integration formula in 1,4 (default), 9 or 16 integration points. The default number of integration points used can be overloaded using NIP parameter. Reduced integration for shear terms is employed. Shear terms are always integrated using the 1-point integration rule.
Features	Nonlocal constitutive support, Geometric nonlinearity support.
CS properties	cross section thickness is required.
Loads	Body loads are supported. Boundary loads are supported and computed using numerical integration. The side numbering is following. Each i-th element side begins in i-th element node and ends on next element node (i+1-th node or 1 -st node, in the case of side number 4). The local positive edge x -axis coincides with side direction, the positive local edge y-axis is rotated 90 degrees anti-clockwise (see fig. (8)).
Nlgeo	0, 1.
Status	Reliable

Table 12: planestress2d element summary

Keyword	linquad3dplanestress
Description	3D quadrilateral element for plane stress analysis
Specific parameters	[NIP \# (in)]
Parameters	NIP: allows to set the number of integration points
Unknowns	Three dofs (u-displacement, v-displacement, wdisplacement) are required in each node.
Approximation	Linear approximation of displacements and geometry.
Integration	Integration of membrane strain terms using Gauss integration formula in 1, 4 (default), 9 or 16 integration points. The default number of integration points used can be overloaded using NIP parameter. Reduced integration for shear terms is employed. Shear terms are always integrated using the 1-point integration rule.
Features	Nonlocal constitutive support, Geometric nonlinearity support.
CS properties	cross section thickness is required.
Loads	Body loads are supported. Boundary loads are supported and computed using numerical integration. The side numbering is following. Each i-th element side begins in i-th element node and ends on next element node (i+1-th node or 1 -st node, in the case of side number 4). The local positive edge x -axis coincides with side direction, the positive local edge y-axis is rotated 90 degrees anti-clockwise (see fig. (8)).
Nlgeo	$0,1$.
Status	Basic functionality tested, element loads need further testing.

Table 13: linquad3dplanestress element summary

2.4.2 QPlaneStress2d

Implementation of quadratic isoparametric eight-node quadrilateral plane-stress finite element. Each node has 2 degrees of freedom. The node numbering is anti-clockwise and is explained in fig. (9). The element features are summarized in Table 14 .

Figure 9: QPlaneStress2d element - node numbering.

2.4.3 TrPlaneStress2d

Implements an triangular three-node constant strain plane-stress finite element. Each node has 2 degrees of freedom. The node numbering is anti-clockwise. The element features are summarized in Table 15

Keyword Description Specific parameters	qplanestress2d 2D quadratic isoparametric plane stress element [NIP \#(in) $]$
Parameters	NIP: allows to set the number of integration points Two dofs (u-displacement, v-displacement) are required in each node.
Unknowns	Quadratic approximation of displacements and geometry. Integration
Full integration using Gauss integration formula in 4 (the default), 9 or 16 integration points. The default number of integration points used can be overloaded using NIP parameter.	
Features	Adaptivity support. Cross section thickness is required.
CS properties	Body and boundary loads are supported. Loads
Nlgeo	Stable
Status	

Table 14: qplanestress2d element summary

Figure 10: TrPlaneStress2d element - node and side numbering.

2.4.4 QTrPlStr

Implementation of quadratic six-node plane-stress finite element. Each node has 2 degrees of freedom. Node numbering is anti-clockwise and is shown in fig. 11). The element features are summarized in Table 16

Figure 11: QTrPlStr element - node and side numbering.

2.4.5 TrPlaneStrRot

Implementation of triangular three-node plane-stress finite element with independent rotation field. Each node has 3 degrees of freedom. The element features are summarized in Table 17

Keyword	trplanestress2d
Description	
Specific parameters	2D linear triangular isoparametric plane stress element
Unknowns	Two dofs (u-displacement, v-displacement) are required in each node.
Approximation Integration	Linear approximation of displacements and geometry. Integration of membrane strain terms using one point gauss
Features	integration formula. Nonlocal constitutive support, Edge load support, Geomet- ric nonlinearity support, Adaptivity support.
CS properties	Cross section thickness is required. Body loads are supported. Boundary loads are supported Loads
	and are computed using numerical integration. The side numbering is following. Each i-th element side begins in i-th element node and ends on next element node (i+1-th
	node or 1-st node, in the case of side number 3). The
	local positive edge x-axis coincides with side direction, the positive local edge y-axis is rotated 90 degrees anti-clockwise
(see fig. 10p).	
Nlgeo	Reliable
Status	

Table 15: trplanestress2d element summary

Keyword Description Specific parameters	qtrplstr 2D quadratic triangular plane stress element [NIP \#(in) $]$
Parameters	NIP: allows to set the number of integration points
Unknowns	Two dofs (u-displacement, v-displacement) are required in each node.
Approximation	Quadratic approximation of displacements and geometry. Integration
Full integration using gauss integration formula in 4 points (the default) or in 7 points (using NIP parameter).	
Features	Adaptivity support (error indicator). CS properties Cross section thickness is required.
Loads	Boundary loads are supported. Nlgeo Status
$0,1$.	

Table 16: qtrplstr element summary

The generalization of this element, that can be positioned arbitrarily in space is trplanestrrot3d element. This element requires 6 degrees of freedon in each node. The element features are summarized in Table 18 ,

The implementation is based on the following paper: Ibrahimbegovic, A., Taylor, R.L., Wilson, E. L.: A robust membrane qudritelar element with rotational degrees of freedom, Int. J. Num. Meth. Engng., 30, 445-457, 1990. The rotation field is defined as $\omega=\frac{1}{2}\left(\frac{\mathrm{~d} v}{\mathrm{~d} x}-\frac{\mathrm{d} u}{\mathrm{~d} y}\right)=\nabla_{u} \boldsymbol{u}$. The following form of potential energy functial is assumed:

$$
\Pi=\frac{1}{2} \int_{\Omega} \boldsymbol{\sigma}^{T} \boldsymbol{\varepsilon} d \Omega+\int_{\Omega} \boldsymbol{\tau}^{T}\left(\nabla_{u} \boldsymbol{u}-\omega\right) d \Omega-\int_{\Omega} \boldsymbol{X}^{T} \boldsymbol{u} d \Omega
$$

where $\boldsymbol{\tau}$ is pseudo-stress (component of anti-symmetric stress tensor) working on dislocation $\left(\nabla_{u} \boldsymbol{u}-\omega\right)$; the following constitutive relation foris assumed: $\boldsymbol{\tau}=G\left(\nabla_{u} \boldsymbol{u}-\omega\right)$, where G is elasticity modulus in shear.

Keyword Description	trplanestrrot 2D linear triangular plane stress element with rotational DOFs
Specific parameters	[NIP \#(in) [NIPRot \#(in) $]$
Parameters	NIP: allows to set the number of integration points for inte- gration of membrane terms. NIPRot: allows to set the number of integration points for integration of terms associated to rotational field. Three dofs (u-displacement, v-displacement, z-rotation) are required in each node.
Unknowns	Linear approximation of displacements and geometry. Integration of membrane strain terms using gauss integration formula in 4 points (default) or using 1 or 7 points (using NIP
Approximation	
Integration	parameter). Integration of strains associated with rotational field integration using 1 point is default (4 and 7 points rules can be specified using NIPRot parameter).
Features	-
CS properties	Cross section thickness is required.
Loads	-
Nlgeo	0.
Status	-

Table 17: trplanestrrot element summary

Keyword	trplanestrrot3d
Description	3D linear triangular plane stress element with rotational DOFs
Specific parameters	[NIP \#(in)] [NIPRot \#(in)]
Parameters	NIP: allows to set the number of integration points for integration of membrane terms. NIPRot: allows to set the number of integration points for integration of terms associated to rotational field.
Unknowns	Six dofs (u-displacement, v-displacement, w-displacement, x-rotation, y-rotation, z-rotation) are required in each node.
Approximation	Linear approximation of displacements and geometry.
Integration	Integration of membrane strain terms using gauss integration formula in 4 points (default) or using 1 or 7 points (using NIP parameter). Integration of strains associated with rotational field integration using 1 point is default (4 and 7 points rules can be specified using NIPRot parameter).
Features	
CS properties	Cross section thickness is required.
Loads	-
Nlgeo	0.
Status	-

Table 18: trplanestrrot3d element summary

2.4.6 TrPlaneStressRotAllman

Implementation of triangular three-node plane-stress with nodal rotations. Each node has 3 degrees of freedom. The element features are summarized in Table 19

The generalization of this element, that can be positioned arbitrarily in space is trplanestressrotallman3d element. This element requires 6 degrees of freedon in each node. The element features are summarized in Table 20

The implementation is based on the following paper: Allman, D.J.: A compatible triangular element including vertex rotations for plane elasticity analysis, Computers \& Structures, vol. 19, no. 1-2, pp. 1-8, 1984. The element is based on plane stress element with quadratic interpolation. The displacements in midside nodes are expressed using vertex displacements and vertex rotations (for edge normal displacement component); the tangential component is interpolated from vertex values. For particular element side starting at i-th vertex and ending in j-th vertex the normal and tangential displacements at edge midpoint can be expressed as

$$
\begin{aligned}
& \left.u_{n}\right|_{l / 2}=\frac{u_{n i}+u_{n j}}{2}+\frac{l}{8}\left(\omega_{i}-\omega_{j}\right) \\
& \left.u_{t}\right|_{l / 2}=\frac{u_{t i}+u_{t j}}{2}
\end{aligned}
$$

where l is edge length. This allows to express global displacements in element midside nodes using vertex displacements and rotations. For a single edge, one obtains:

$$
\begin{aligned}
& \left.u\right|_{l / 2}=-\frac{u_{n i}+u_{n j}}{2}+\frac{l}{8}\left(\omega_{i}-\omega_{j}\right) \frac{\Delta y_{j i}}{l}+\left(\frac{u_{t 1}+u_{t 2}}{2}\right) \frac{\Delta x_{j i}}{l} \\
& \left.v\right|_{l / 2}=\frac{u_{n i}+u_{n j}}{2}+\frac{l}{8}\left(\omega_{i}-\omega_{j}\right) \frac{\Delta x_{j i}}{l}+\left(\frac{u_{t 1}+u_{t 2}}{2}\right) \frac{\Delta y_{j i}}{l}
\end{aligned}
$$

\(\left.$$
\begin{array}{|l|l|}\hline \begin{array}{l}\text { Keyword } \\
\text { Description }\end{array} & \begin{array}{l}\text { trplanestressrotallman } \\
\text { 2D linear triangular plane stress element with rotational } \\
\text { DOFs }\end{array} \\
\text { Specific parameters }\end{array}
$$ \quad \begin{array}{l}Three dofs (u-displacement, v-displacement, z-rotation) are

required in each node.

Linear approximation of geometry, quadratic interpolation

of displacements.

Approximation

Integration of membrane strain terms using gauss integration

formula in 4 points.

The zero energy mode (equal rotations) is handled by adding

additional energy term preventing spurious modes.\end{array}\right\}\)| Zero energy mode |
| :--- |
| Features |
| CS properties |
| Loads |
| Nlgeo |
| Status |

Table 19: trplanestressrotallman element summary
\(\left.$$
\begin{array}{|l|l|}\hline \begin{array}{l}\text { Keyword } \\
\text { Description }\end{array} & \begin{array}{l}\text { trplanestressrotallman3d } \\
\text { 2D linear triangular plane stress element with rotational } \\
\text { DOFs }\end{array} \\
\text { Specific parameters }\end{array}
$$ \quad \begin{array}{l}Six dofs (D_u, D_v, D_w, R_x, R_y, R_z) are required in each

node.

Linear approximation of geometry, quadratic interpolation

of displacements.

Integration of membrane strain terms using gauss integration

formula in 4 points.

The zero energy mode (equal rotations) is handled by adding

additional energy term preventing spurious modes.\end{array}\right\}\)| Integration |
| :--- |
| Zero energy mode |
| Features |
| CS properties |
| Loads |
| Nlgeo |
| Ctatus |$\quad-\quad$| Cross section thickness is required. |
| :--- |

Table 20: trplanestressrotallman3d element summary

2.5 Plane Strain Elements

2.5.1 Quad1PlaneStrain

Represents isoparametric four-node quadrilateral plane-strain finite element. Each node has 2 degrees of freedom. Structure should be defined in x,y plane. The nodes should be numbered anti-clockwise (positive rotation around z-axis). The element features are summarized in Table 21 .

Figure 12: Quad1PlaneStrain element. Node numbering, Side numbering and definition of local edge c.s.(a).

Keyword	quad1planestrain
Description	2D linear quadrilateral plane-strain element
Specific parameters	[NIP \# (in) ${ }^{\text {] }}$
Parameters	NIP: allows to set the number of integration points for integration of membrane terms.
Unknowns	Two dofs (u-displacement, v-displacement) are required in each node.
Approximation	Linear approximation of displacements and geometry.
Integration	Integration of membrane strain terms using gauss integration formula in 4 (the default), 9 or 16 integration points. The default number of integration points used can be overloaded using NIP parameter. Reduced integration for shear terms is employed. Shear terms are always integrated using 1 point integration rule.
Features	Nonlocal constitutive support, Adaptivity support.
CS properties	Cross section thickness is required.
Loads	Body loads are supported. Boundary loads are supported and computed using numerical integration. The side numbering is following. Each i-th element side begins in i-th element node and ends on next element node (i+1-th node or 1 -st node, in the case of side number 4). The local positive edge x -axis coincides with side direction, the positive local edge y-axis is rotated 90 degrees anti-clockwise (see fig. (12)).
Nlgeo	
Status	Reliable

Table 21: quad1planestrain element summary

2.5.2 TrplaneStrain

Implements an triangular three-node constant strain plane-strain finite element. Each node has 2 degrees of freedom. The node numbering is anti-clockwise. The element features are summarized in Table 22 ,

Figure 13: TrplaneStrain element - node and side numbering.

Keyword	trplanestrain
Description	2D linear triangular plane-strain element
Specific parameters	-
Unknowns	Two dofs (u-displacement, v-displacement) are required in each node.
Approximation	Linear approximation of displacements and geometry.
Integration	Integration of membrane strain terms using one point gauss integration formula.
Features	Nonlocal constitutive support. Edge load support, Adaptivity support.
CS properties	Cross section thickness is required.
Loads	Body loads are supported. Boundary loads are supported and are computed using numerical integration. The side numbering is following. Each i-th element side begins in i-th element node and ends on next element node (i+1-th node or 1 -st node, in the case of side number 3). The local positive edge x-axis coincides with side direction, the positive local edge y-axis is rotated 90 degrees anti-clockwise (see fig. (13p).
Nlgeo	0.
Status	Reliable

Table 22: trplanestrain element summary

2.6 Plate \& Shell Elements

2.6.1 DKT Element

Implementation of Discrete Kirchhoff Triangle (DKT) plate element. This element is suitable for thin plates, as the traswerse shear strain energy is neglected. The structure should be defined in x, y plane, nodes should be numbered anti-clockwise (positive rotation around z-axis). The element features are summarized in Table 23

Keyword	dktplate
Description	2D Discrete Kirchhoff Triangular plate element
Specific parameters	-
Unknowns	Three dofs (w-displacement, u and v - rotations) are required in each node.
Approximation	Quadratic approximation of rotations, cubic approximation of displacement along the edges. Note: there is no need to define interpolation for displacement on the element.
Integration	Default integration of all terms using three point formula.
Features	Layered cross section support.
CS properties	Cross section thickness is required.
Loads	Body loads are supported. Boundary load support is beta.
Output	On output, the generalized shell strain/force momentum vectors in global coordinate system are printed, with the following meaning:
	$\begin{aligned} & s_{\varepsilon}=\left\{\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{x z}, \kappa_{x}, \kappa_{y}, \kappa_{x y}, \gamma_{x z}, \gamma_{y z}\right\}, \\ & s_{\sigma}=\left\{n_{x}, n_{y}, n_{x y}, m_{x}, m_{y}, m_{z}, m_{x y}, q_{x z}, q_{y z}\right\} \end{aligned}$
	where $\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{x y}$ are membrane in plane normal deformations, $\gamma_{z x}, \gamma_{x z}$ are (out of plane and in plane) shear componets, $\kappa_{x}, \kappa_{y}, \kappa_{x y}$ are curvatures, $n_{x}, n_{y}, n_{x y}, q_{x z}, q_{y z}$ are integral forces (normal and shear forces), and $m_{x}, m_{y}, m_{x y}$ are bending moments. Please note, for example, that bending moment m_{x} is defined as $m_{x}=\int \sigma_{x} z d z$, so it acts along the y-axis and positive value causes tension in bottom layer.
Nlgeo	
Status	Reliable
Reference	J.L.Batoz, K.J.Bathe, L.W.Ho: A study of three-node triangular plate bending elements, IJNME, 15(12):1771-1812, 1980

Table 23: DKTplate element summary

2.6.2 QDKT Element

Implementation of Discrete Kirchhoff Theory plate quad element (QDKT). This element is suitable for thin plates, as the traswerse shear strain energy is neglected. The structure should be defined in x, y plane, nodes should be numbered anti-clockwise (positive rotation around z-axis). The element features are summarized in Table 24.

2.6.3 CCT Element

Implementation of constant curvature triangular element for plate analysis. Formulation based on Mindlin hypothesis. The structure should be defined in x,y plane. The nodes should be numbered anti-clockwise

Keyword	qdktplate
Description	2D Discrete Kirchhoff Quad plate element
Specific parameters	-
Unknowns	Three dofs (w-displacement, u and v - rotations) are required in each node.
Approximation	Quadratic approximation of rotations, cubic approximation of displacement along the edges. Note: there is no need to define interpolation for displacement on the element.
Integration	Default integration of all bending terms using four point formula.
Features	Layered cross section support.
CS properties	Cross section thickness is required.
Loads	Body loads are supported.
Output	On output, the generalized shell strain/force momentum vectors in global coordinate system are printed, with the following meaning:
	$\begin{aligned} s_{\varepsilon} & =\left\{\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{x z}, \kappa_{x}, \kappa_{y}, \kappa_{x y}, \gamma_{x z}, \gamma_{y z}\right\}, \\ s_{\sigma} & =\left\{n_{x}, n_{y}, n_{x y}, m_{x}, m_{y}, m_{z}, m_{x y}, q_{x z}, q_{y z}\right\} \end{aligned}$
	where $\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{x y}$ are membrane in plane normal deformations, $\gamma_{z x}, \gamma_{x z}$ are (out of plane and in plane) shear componets, $\kappa_{x}, \kappa_{y}, \kappa_{x y}$ are curvatures, $n_{x}, n_{y}, n_{x y}, q_{x z}, q_{y z}$ are integral forces (normal and shear forces), and $m_{x}, m_{y}, m_{x y}$ are bending moments. Please note, for example, that bending moment m_{x} is defined as $m_{x}=\int \sigma_{x} z d z$, so it acts along the y -axis and positive value causes tension in bottom layer.
Nlgeo	
Status	Reliable
Reference	J.L.Batoz, K.J.Bathe, L.W.Ho: A study of three-node triangular plate bending elements, IJNME, 15(12):1771-1812, 1980

Table 24: QDKTplate element summary
(positive rotation around z-axis). The element features are summarized in Table 25

2.6.4 CCT3D Element

Implementation of constant curvature triangular element for plate analysis. Formulation based on Mindlin hypothesis. The element could be arbitrarily oriented in space. The nodes should be numbered anti-clockwise (positive rotation around element normal). The element features are summarized in Table 26

2.6.5 RerShell Element

Combination of CCT plate element (Mindlin hypothesis) with triangular plane stress element for membrane behavior. The element curvature can be specified. Although element requires generally six DOFs per node, no stiffness to local rotation along z-axis (rotation around element normal) is supplied. The element features are summarized in Table 27.

Keyword	cctplate
Description	2D constant curvature triangular plate element
Specific parameters	-
Unknowns	Three dofs (w-displacement, u and v - rotations) are required in each node.
Approximation	Linear approximation of rotations, quadratic approximation of displacement.
Integration	Integration of all terms using one point formula.
Features	Layered cross section support.
CS properties	Cross section thickness is required.
Loads	Body loads are supported. Boundary loads are not supported now.
Output	On output, the generalized shell strain/force momentum vectors in global coordinate system are printed, with the following meaning:
	$\begin{aligned} s_{\varepsilon} & =\left\{\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{x z}, \kappa_{x}, \kappa_{y}, \kappa_{x y}, \gamma_{x z}, \gamma_{y z}\right\}, \\ s_{\sigma} & =\left\{n_{x}, n_{y}, n_{x y}, m_{x}, m_{y}, m_{z}, m_{x y}, q_{x z}, q_{y z}\right\} \end{aligned}$
	where $\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{x y}$ are membrane in plane normal deformations, $\gamma_{z x}, \gamma_{x z}$ are (out of plane and in plane) shear componets, $\kappa_{x}, \kappa_{y}, \kappa_{x y}$ are curvatures, $n_{x}, n_{y}, n_{x y}, q_{x z}, q_{y z}$ are integral forces (normal and shear forces), and $m_{x}, m_{y}, m_{x y}$ are bending moments. Please note, for example, that bending moment m_{x} is defined as $m_{x}=\int \sigma_{x} z d z$, so it acts along the y-axis and positive value causes tension in bottom layer.
Nlgeo	
Status	Reliable

Table 25: cctplate element summary

2.6.6 \quad tr_shell01 element

Combination of CCT3D plate element (Mindlin hypothesis) with triangular plane stress element for membrane behavior. It comes with complete set of 6 DOFs per node. The element features are summarized in Table 28

Figure 14: Geometry of tr shell01 element.

Keyword Description	cctplate3d Constant curvature triangular plate element in arbitray position
Specific parameters	-
Unknowns	Six dofs ($\mathrm{u}, \mathrm{v}, \mathrm{w}$-displacements and $\mathrm{u}, \mathrm{v}, \mathrm{w}$ rotations) are in general required in each node.
Approximation	Linear approximation of ratations, quadratic approximation of displacement.
Integration	Integration of all terms using one point formula.
Features	Layered cross section support.
CS properties	Cross section thickness is required.
Loads	Body loads are supported. Boundary loads are not supported now.
Output	On output, the shell force $\left(s_{f}\right)$, shell strain $\left(s_{s}\right)$, shell momentum $\left(s_{m}\right)$, and shell curvature $\left(s_{c}\right)$ tensors in global coordinate system are printed as vector form with 6 components, with the following meaning:
	$\begin{aligned} s_{f} & =\left\{n_{x}, n_{y}, n_{z}, v_{y z}, v_{x z}, v_{x y}\right\}, \\ s_{s} & =\left\{\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z}, \gamma_{y z}, \gamma_{x z}, \gamma_{x y}\right\} \\ s_{m} & =\left\{m_{x}, m_{y}, m_{z}, m_{y z}, m_{x z}, m_{x y}\right\}, \\ s_{c} & =\left\{\kappa_{x}, \kappa_{y}, \kappa_{z}, \kappa_{y z}, \kappa_{x z}, \kappa_{x y}\right\} \end{aligned}$
	where $\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z}$ are membrane normal deformations, $\gamma_{z y}, \gamma_{z x}, \gamma_{x y}$ are (out of plane and in plane) shear componets, $\quad \kappa_{x}, \kappa_{y}, \kappa_{z}, \kappa_{y z}, \kappa_{x z}, \kappa_{x y}$ are curvatures, $n_{x}, n_{y}, n_{z}, v_{y z}, v_{x z}, v_{x y}$ are integral forces (normal and shear forces), and $m_{x}, m_{y}, m_{z}, m_{y z}, m_{x z}, m_{x y}$ are bending moments. Please note, for example, that bending moment m_{x} is defined as $m_{x}=\int \sigma_{x} z d z$, so it acts along the y-axis and positive value causes tension in bottom layer.
Nlgeo	
Status	Reliable

Table 26: cctplate3d element summary

2.6.7 tr_shell02 element

Combination of thin-plate DKT plate element with plane stress element (TrPlanestressRotAllman). This element comes with complete set of 6 DOFs per node. The element features are summarized in Table 29 .

2.6.8 Quad1Mindlin Element

This class implements an quadrilateral, bilinear, four-node Mindlin plate. This type of element exhibit strong shear locking (thin plates exhibit almost no bending). Implements the lumped mass matrix. The element features are summarized in Table 30 .

2.6.9 $\operatorname{Tr} 2$ Shell7 Element

This class implements a triangular, quadratic, six-node shell element. The element is a so-called seven parameter shell with seven dofs per node - a displacement field (3 dofs), an extensible director field (3 dofs) and a seventh

Keyword	rershell
Description	Simple shell based on combination of CCT plate element (Mindlin hypothesis) with triangular plane stress element. element can be arbitrary positioned in space.
Specific parameters	-
Unknowns	Six dofs ($\mathrm{u}, \mathrm{v}, \mathrm{w}$-displacements and $\mathrm{u}, \mathrm{v}, \mathrm{w}$ rotations) are in general required in each node. Note, that although element it requires generally six DOFs per node, no stiffness to local rotation along z-axis (rotation around element normal) is supplied.
Approximation	Linear approximation of ratations, quadratic approximation of displacement.
Integration	Integration of all terms using one point formula.
Features	Layered cross section support.
CS properties	Cross section thickness is required.
Loads	Body loads are supported. Boundary loads are not supported now.
Output	On output, the shell force $\left(s_{f}\right)$, shell strain $\left(s_{s}\right)$, shell momentum $\left(s_{m}\right)$, and shell curvature $\left(s_{c}\right)$ tensors in global coordinate system are printed as vector form with 6 components, with the following meaning:
	$\begin{aligned} s_{f} & =\left\{n_{x}, n_{y}, n_{z}, v_{y z}, v_{x z}, v_{x y}\right\}, \\ s_{s} & =\left\{\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z}, \gamma_{y z}, \gamma_{x z}, \gamma_{x y}\right\}, \\ s_{m} & =\left\{m_{x}, m_{y}, m_{z}, m_{y z}, m_{x z}, m_{x y}\right\}, \\ s_{c} & =\left\{\kappa_{x}, \kappa_{y}, \kappa_{z}, \kappa_{y z}, \kappa_{x z}, \kappa_{x y}\right\} \end{aligned}$
	where $\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z}$ are membrane normal deformations, $\gamma_{z y}, \gamma_{z x}, \gamma_{x y}$ are (out of plane and in plane) shear componets, $\quad \kappa_{x}, \kappa_{y}, \kappa_{z}, \kappa_{y z}, \kappa_{x z}, \kappa_{x y}$ are curvatures, $n_{x}, n_{y}, n_{z}, v_{y z}, v_{x z}, v_{x y}$ are integral forces (normal and shear forces), and $m_{x}, m_{y}, m_{z}, m_{y z}, m_{x z}, m_{x y}$ are bending moments. Please note, for example, that bending moment m_{x} is defined as $m_{x}=\int \sigma_{x} z d z$, so it acts along the y-axis and positive value causes tension in bottom layer.
Nlgeo	
Status	Reliable

Table 27: rershell element summary
dof representing inhomogenous thickness strain. This last parameter is included in the model in order to deal with volumetric/Poisson lock effects.

The element features are summarized in Table 30 .

2.6.10 MITC4Shell Element

A four-node quadrilateral shell element formulated using three-dimensional continuum mechanics theory degenerated to shell behaviour. The element is applicable to thick and thin shells as the "mixed interpolation of tensorial components" (MITC) approach is used to remove shear locking. The implementation is based on the following paper: Dvorkin, E.N., Bathe, K.J.: A continuum mechanics based four-node shell element for general non-linear analysis, Eng.Comput., Vol.1, 77-88, 1984.

Although element requires generally six DOFs per node, no stiffness to local rotation along z-axis (rotation around director vector) is supplied. The element features are summarized in Table 32 .
$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { Keyword } \\ \text { Description }\end{array} & \begin{array}{l}\text { tr_shell01 } \\ \text { Triangular shell element combining CCT3D plate element } \\ \text { (Mindlin hypothesis) with triangular plane stress element }\end{array} \\ \text { with rotational DOFs }\end{array}\right\}$

Table 28: tr_shell01 element summary

2.6.11 Sub-soil Elements

2.6.12 quad1plateSubsoil Element

This class implements an quadrilateral, bilinear, four-node plate subsoil element. Typically this element is combined with suitable plate element with quadrilateral geometry to model plate element on (elastic) subsoill foundation, but it can be used alone. The element geometry should be define in xy plane. The element features are summarized in Table 33 .

2.6.13 Tria1PlateSubSoil Element

This class implements an quadrilateral, bilinear, four-node plate subsoil element. Typically this element is combined with suitable plate element with quadrilateral geometry to model plate element on (elastic) subsoill foundation, but it can be used alone. The element geometry should be define in xy plane. The element features are summarized in Table 33 ,

Keyword	tr_shell02
Description	Triangular shell element combining DKT plate element with triangular plane stress element with rotational DOFs
Specific parameters	-
Unknowns	Six dofs ($\mathrm{u}, \mathrm{v}, \mathrm{w}$-displacements and $\mathrm{u}, \mathrm{v}, \mathrm{w}$ rotations) are in general required in each node.
Approximation	See description of cct and trplanstrrot elements
Integration	4 integration points necessary, use "NIP 4" in element record.
CS properties	Cross section thickness is required.
Loads	Body loads are supported. Boundary loads are supported (only surface loads).
Output	On output, the shell force $\left(s_{f}\right)$, shell strain $\left(s_{s}\right)$, shell momentum $\left(s_{m}\right)$, and shell curvature $\left(s_{c}\right)$ tensors in global coordinate system are printed as vector form with 6 components, with the following meaning:
	$\begin{aligned} s_{f} & =\left\{n_{x}, n_{y}, n_{z}, v_{y z}, v_{x z}, v_{x y}\right\}, \\ s_{s} & =\left\{\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z}, \gamma_{y z}, \gamma_{x z}, \gamma_{x y}\right\}, \\ s_{m} & =\left\{m_{x}, m_{y}, m_{z}, m_{y z}, m_{x z}, m_{x y}\right\}, \\ s_{c} & =\left\{\kappa_{x}, \kappa_{y}, \kappa_{z}, \kappa_{y z}, \kappa_{x z}, \kappa_{x y}\right\} \end{aligned}$
	where $\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z}$ are membrane normal deformations, $\gamma_{z y}, \gamma_{z x}, \gamma_{x y}$ are (out of plane and in plane) shear componets, $\kappa_{x}, \kappa_{y}, \kappa_{z}, \kappa_{y z}, \kappa_{x z}, \kappa_{x y}$ are curvatures, $n_{x}, n_{y}, n_{z}, v_{y z}, v_{x z}, v_{x y}$ are integral forces (normal and shear forces), and $m_{x}, m_{y}, m_{z}, m_{y z}, m_{x z}, m_{x y}$ are bending moments. Please note, for example, that bending moment m_{x} is defined as $m_{x}=\int \sigma_{x} z d z$, so it acts along the y -axis and positive value causes tension in bottom layer.
Nlgeo	
Status	-

Table 29: tr_shell02 element summary

Keyword Description Specific parameters	quad1mindlin Quadrilateral, bilinear, four-node Mindlin plate [NIP \#(in)]
Unknowns	Three dofs (w-displacement, u and v-rotation) are required in each node.
Approximation	Linear for all unknowns.
Integration	Default uses 4 integration points. No reduced integration is used, as it causes numerical problems.
Features	Layered cross section support.
CS properties	Cross section thickness is required.
Loads	Dead weight loads, and edge loads are supported.
Output	On output, the generalized shell strain/force momentum vectors in global coordinate system are printed, with the following meaning:
	$\begin{aligned} & s_{\varepsilon}=\left\{\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{x z}, \kappa_{x}, \kappa_{y}, \kappa_{x y}, \gamma_{x z}, \gamma_{y z}\right\} \\ & s_{\sigma}=\left\{n_{x}, n_{y}, n_{x y}, m_{x}, m_{y}, m_{z}, m_{x y}, q_{x z}, q_{y z}\right\} \end{aligned}$
	where $\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{x y}$ are membrane in plane normal deformations, $\gamma_{z x}, \gamma_{x z}$ are (out of plane and in plane) shear componets, $\kappa_{x}, \kappa_{y}, \kappa_{x y}$ are curvatures, $n_{x}, n_{y}, n_{x y}, q_{x z}, q_{y z}$ are integral forces (normal and shear forces), and $m_{x}, m_{y}, m_{x y}$ are bending moments. Please note, for example, that bending moment m_{x} is defined as $m_{x}=\int \sigma_{x} z d z$, so it acts along the y -axis and positive value causes tension in bottom layer.
Nlgeo	0.
Reference	[1]
Status	Experimental

Table 30: quad1mindlin element summary

Keyword	tr2shell7
Description Specific parameters	Triangular, quadratic, six-node shell with 7 dofs/node [NIP \# (in)]
Unknowns	Seven dofs (displacement in u, v and w-direction; change in director field in u, v and w-direction; and inhomgenous thickness stretch) are required in each node.
Approximation	Quadratic for all unknowns.
Integration	Default uses 6 integration points in the midsurface plane. Number of integration points in the thickness direction is determined by the Layered cross section.
Features	Layered cross section support.
CS properties	This element must be used with a Layered cross section.
Loads	Edge loads, constant pressure loads and surface loads are supported.
Nlgeo	Not applicable. The implementation is for large defomrations and hence geometrical nonlinearities will always be present, regardless the value of Nlgeo.
Reference	[3]
Status	Experimental

Table 31: tr2shell7 element summary

Keyword Description Specific parameters	mitc4shell Quadrilateral, bilinear, four-node shell element using the MITC technique. $\left[\mathrm{NIP} \#_{(\mathrm{in})}\right]\left[\mathrm{NIPZ} \#_{(\mathrm{in})}\right][\text { directorType \#(in) }]$
Parameters	NIP: allows to set the number of integration points in local x-y plane (default 4). NIPZ: allows to set the number of integration points in local z-direction (default 2). directorType: allows to set director vectors. Director vectors can be set as normal to the plane (directorType $=0$, default), or calculated for each node as an average of neighbouring elements of same crosssection (directorType $=1$), or can be specified at crosssection (directorType $=2$).
Unknowns	Six dofs ($\mathrm{u}, \mathrm{v}, \mathrm{w}$-displacements and $\mathrm{u}, \mathrm{v}, \mathrm{w}$ rotations) are in general required in each node. Note, that although element requires generally six DOFs per node, no stiffness to local rotation along z -axis (rotation around director vector) is supplied.
Approximation Integration	Linear approximation of displacements and rotations. Integration of all terms using Gauss integration formula in 8 points (default) or specified using NIP and NIPZ parameters.
Features CS properties	Variable cross section support. Cross section thickness is required (measured along director vector). Director vectors components may be specified [directorx $\#_{(\text {in })}$ [directory $\left.\#_{(\text {(in) }}\right]\left[\right.$ directorz $\#_{(i n)}$] in case of directorType 2.
Loads	Body and boundary loads are supported.
Output	On output, the shell force $\left(s_{f}\right)$, shell momentum $\left(s_{m}\right)$, shell strain $\left(s_{s}\right)$, shell curvature $\left(s_{c}\right)$, strain (ε), and stress (σ) tensors in global coordinate system are printed as vector form with 6 components, with the following meaning: $\begin{array}{rlr} s_{f} & =\left\{n_{x}, n_{y}, n_{z}, v_{y z}, v_{x z}, v_{x y}\right\}, \\ s_{m} & =\left\{m_{x}, m_{y}, m_{z}, m_{y z}, m_{x z}, m_{x y}\right\}, \\ s_{s} & =\left\{\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z}, \gamma_{y z}, \gamma_{x z}, \gamma_{x y}\right\}, \\ s_{c} & =\left\{\kappa_{x}, \kappa_{y}, \kappa_{z}, \kappa_{y z}, \kappa_{x z}, \kappa_{x y}\right\} \\ \varepsilon & = & \\ \sigma & =\left\{\sigma_{x}, \sigma_{y}, \sigma_{z}, \sigma_{y z}, \sigma_{x z}, \sigma_{x y}\right\} . & \left\{\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z}, \gamma_{y z}, \gamma_{z x}, \gamma_{x y}\right\}, \end{array}$ where $n_{x}, n_{y}, n_{z}, v_{y z}, v_{x z}, v_{x y}$ are integral forces (normal and shear forces), and $m_{x}, m_{y}, m_{z}, m_{y z}, m_{x z}, m_{x y}$ are bending moments, $\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z}$ are membrane normal deformations, $\gamma_{z y}, \gamma_{z x}, \gamma_{x y}$ are (out of plane and in plane) shear componets, $\kappa_{x}, \kappa_{y}, \kappa_{z}, \kappa_{y z}, \kappa_{x z}, \kappa_{x y}$ are curvatures. Please note, for example, the bending moment m_{x} is defined as $m_{x}=\int \sigma_{x} z d z$, so it acts along the y -axis and positive value causes tension in bottom layer (positive z-coordinate). The shell force $\left(s_{f}\right)$, shell momentum $\left(s_{m}\right)$, shell strain $\left(s_{s}\right)$, and shell curvature $\left(s_{c}\right)$ tensors are evaluated at the midplane of the element (thus are constant along the thickness) while the strain (ε), and stress (σ) tensors are evaluated at each Gausspoint.
Nlgeo	
Status	

Table 32: mitc4shell element summary

Keyword Description Specific parameters	quad1plateSubsoil Quadrilateral, bilinear, four-node sub-soil plate element
Unknowns	One dof (w-displacement) is required in each node.
Approximation	Linear for transwersal displacement.
Integration	4 integration points.
Loads	Surface load support.
Note Reference	Requires material model with 2dPlateSubSoil mode support.
	$2]$

Table 33: quad1platesubsoil element summary

Keyword Description	tria1platesubsoil Tringular, three-node sub-soil plate element with linear interpolation
Specific parameters	
Unknowns	One dof (w-displacement) is required in each node. Approximation Integration
Linear for transwersal displacement. Loads	integration points. Surface load support. Reference
Requires material model with 2dPlateSubSoil mode support.	
$[2$	

Table 34: tria1platesubsoil element summary

2.7 Axisymmetric Elements

Implementation relies on elements located exclusively in x, y plane. The coordinate x corresponds to radius, y is the axis of rotation. Approximation of displacement functions u, v is carried out on a particular finite element. Nonzero strains read

$$
\begin{align*}
\varepsilon_{x}=\varepsilon_{r} & =\frac{\partial u}{\partial x} \tag{2}\\
\varepsilon_{y}=\varepsilon_{z} & =\frac{\partial v}{\partial y} \tag{3}\\
\varepsilon_{\theta} & =\frac{u}{r} \tag{4}\\
\gamma_{x y}=\gamma_{r z} & =\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} \tag{5}
\end{align*}
$$

Stress components can be computed from elasticity matrix. Note that this matrix corresponds to a submatrix of the full 3 D elasticity matrix.

$$
\left\{\begin{array}{c}
\sigma_{x} \tag{6}\\
\sigma_{y} \\
\sigma_{\theta} \\
\sigma_{x y}
\end{array}\right\}=\frac{E}{(1+\nu)(1-2 \nu)}\left[\begin{array}{cccc}
1-\nu & \nu & \nu & 0 \\
\nu & 1-\nu & \nu & 0 \\
\nu & \nu & 1-\nu & 0 \\
0 & 0 & 0 & (1-2 \nu) / 2
\end{array}\right]=\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\varepsilon_{\theta} \\
\gamma_{x y}
\end{array}\right\}
$$

In OOFEM, the strain vector is arranged as $\left\{\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{\theta}, 0,0, \gamma_{x y}\right\}^{T}$ and the stress vector $\left\{\sigma_{x}, \sigma_{y}, \sigma_{\theta}, 0,0, \tau_{x y}\right\}^{T}$. Implementation assumes a segment of 1 rad .

2.7.1 Axisymm3d element

Implementation of triangular three-node finite element for axisymmetric continuum. Each node has 2 degrees of freedom. Node numbering and edge position is the same as in Fig. 10. The element features are summarized in Table 35

Keyword Description Specific parameters	Axisymm3d Triangular axisymmetric linear element [NIP \#(in) $]$
Parameters	NIP: allows to set the number of integration points (possible completions are 1 (default), 4 and 7 point integration rule). Two dofs (u-displacement, v-displacement) are required in each node.
Unknowns	Linear approximation of displacement and geometry. The integration can be altered using NIP paramter (default
Approximation	
Integration	is 1 point integration).
Features	-
CS properties	-
Loads	Boundary and body loads are supported.
Nlgeo	0.
Status	-

Table 35: Axisymm3d element summary

2.7.2 Q4axisymm element

Implementation of quadratic isoparametric eight-node quadrilateral - finite element for axisymmetric 3d continuum. Each node has 2 degrees of freedom. The element features are summarized in Table 36 .

Keyword	Q4axisymm
Description	Quadratic isoparametric eight-node quadrilateral for axisymmetric analysis
Specific parameters	[NIP \# ${ }_{(\text {in })}$] [NIPfish \# ${ }_{(\mathrm{in})}$]
Parameters	NIP: allows to set the number of integration points for integration of terms corresponding to ε_{x} and ε_{y} strains (possible completions are 1,4 (default), 9 , and 16). NIPfish: allows to set the number of integration points for integration of remain terms (corresponding to ε_{θ} and $\gamma_{r z}$) (Supported values include 1 (default), 4,9 , and 16 integration point formula).
Unknowns	Two dofs (u-displacement, v-displacement) are required in each node.
Approximation	Quadratic approximation of displacement and geometry.
Integration	The integration of terms corresponding to ε_{x} and ε_{y} strains can be altered using NIP parameter (default is 4 point formula). The remaining terms (creesponding to ε_{θ} and $\gamma_{r z}$) are integrated by default using 1 point formula (see NIPfish parameter).
Features	
CS properties	-
Loads	No boundary and body loads are supported.
Nlgeo	0.
Status	-

Table 36: Q4axisymm element summary

2.7.3 L4axisymm element

Implementation of isoparametric four-node quadrilateral axisymmetric finite element with linear interpolations of displacements u, v. Node numbering and edge position is the same as in Fig. 8. The element features are summarized in Table 37.

Keyword	L4axisymm
Description	Isoparametric four-node quadrilateral element for axisymmetric analysis
Specific parameters	[NIP \# (in)]
Parameters	NIP: allows to set the number of integration points for integration of terms corresponding to ε_{x} and ε_{y} strains (possible completions are 1,4 (default), 9 , and 16).
Unknowns	Two dofs (u-displacement, v-displacement) are required in each node.
Approximation	Linear approximation of displacement and geometry.
Integration	The integration of ε_{x} and ε_{y} strains can be altered using NIP parameter (possible completions are 1, 4 (default), 9 or 16 point integration rule). The remaining strain components (ε_{θ} and $\gamma_{r z}$) are integrated using one point integration formula.
Features	-
CS properties	-
Loads	Boundary and body loads supported.
Nlgeo	0.
Status	-

Table 37: L4axisymm element summary

2.8 3d Continuum Elements

2.8.1 LSpace element

Implementation of Linear 3d eight - node finite element. Each node has 3 degrees of freedom. The element features are summarized in Table 38 .

Figure 15: LSpace element (Node numbers in black, side numbers in blue, and surface numbers in red).

Keyword Description Specific parameters	lspace Linear isoparametric brick element [NIP \#(in) $]$
Parameters	NIP: allows to set the number of integration points (possible completions are 1, 8 (default), or 27). Three dofs (u-displacement, v-displacement, \quad w- displacement) are required in each node.
Unknowns	Linear approximation of displacement and geometry.
Approximation Integration	Full integration of all strain components. Adaptivity support, Geometric nonlinearity support.
Features CS properties Loads	-
Nlgeo	-
Status	$0,1,2$.
Reliable	

Table 38: lspace element summary

2.8.2 LSpaceBB element

Implementation of 3d brick eight - node linear approximation element with selective integration of deviatoric and volumetric strain contributions (B-bar formulation) for incompressible problems. Features and description identical to conventional lspace element, see section 2.8.1.

2.8.3 QSpace element

Implementation of quadratic 3d 20-node finite element. Each node has 3 degrees of freedom. The element features are summarized in Table 39 .

Figure 16: QSpace element.

Keyword Description Specific parameters	qspace Quadratic isoparametric brick element $[$ NIP \#(in) $]$
Parameters	NIP: allows to set the number of integration points (possible completions are 1, 8 (default), or 27).
Unknowns	Three dofs (u-displacement, v-displacement, w- displacement) are required in each node.
Approximation	Quadratic approximation of displacement and geometry. Integration
Full integration of all strain components.	
CS properties	-
Loads	-
Nlgeo	-
Status	$0,1,2$.
Reliable	

Table 39: qspace element summary

2.8.4 LTRSpace element

Implementation of tetrahedra four-node finite element. Each node has 3 degrees of freedom. The element features are summarized in Table 40. Following node numbering convention is adopted (see also Fig. 17):

- Select a face that will contain the first three corners. The excluded corner will be the last one.
- Number these three corners in a counterclockwise sense when looking at the face from the excluded corner.

2.8.5 QTRSpace element

Implementation of tetrahedra ten-node finite element. Each node has 3 degrees of freedom. The element features are summarized in Table 41. Following node numbering convention is adopted (see also Fig. 18):

2.8.6 LWedge element

Implementation of wedge six-node finite element. Each node has 3 degrees of freedom. The element features are summarized in Table 42. Following node numbering convention is adopted (see also Fig. 19):

Figure 17: LTRSpace element. Definition and node numbering convention.

Keyword Description Specific parameters	LTRSpace Linear tetrahedra element Unknowns Approximation Integration
Three dofs (u-displacement, v-displacement, w-	
displacement) are required in each node.	
Features	Linear approximation of displacements and geometry using linear volume coordinates. CS properties Full integration of all strain components using four point Loads
Glauss integration formula.	
Nlgeo	Adaptivity support, Geometric nonlinearity support.
Status	-
	Surface and Edge loadings supported.
	$0,1,2$.
Reliable	

Table 40: LTRSpace element summary

2.8.7 QWedge element

Implementation of wedge fifteen-node finite element. Each node has 3 degrees of freedom. The element features are summarized in Table 43. Following node numbering convention is adopted (see also Fig. 20):

Figure 18: QTRSpace element. Definition and node numbering convention.

Keyword Description Specific parameters	QTRSpace 3D tetrahedra element with quadratic interpolation [NIP \#(in) $]$
Parameters	NIP: allows to alter the default integration formula (possible completions are 1, 4 (default), 5, 11, 15, 24, and 45 point intergartion formulas).
Unknowns	Three dofs (u-displacement, v-displacement, w- displacement) are required in each node. Quadratic approximation of displacements and geometry
Approximation	using linear volume coordinates.
Integration	Full integration of all strain components using four point Gauss integration formula.
Features	-
CS properties	-
Loads	-
Nlgeo	$0,1,2$.
Status	Reliable

Table 41: QTRSpace element summary

Figure 19: LWedge element. Node numbering convention in black, edge numbering in blue and face numbering in red.

Figure 20: QWedge element. Node numbering convention in black, edge numbering in blue and face numbering in red.

Keyword Description Specific parameters	LWedge 3D wedge six-node finite element with linear interpolation $[$ NIP \#(in) $]$
Parameters	NIP: allows to alter the default integration formula (pos- sible completions are 2 (default) and 9 point integration formulas). Three dofs (u-displacement, v-displacement, w- displacement) are required in each node.
Unknowns	Linear approximation of displacements and geometry.
Approximation Integration	Full integration of all strain components using four point Gauss integration formula.
Features	-
CS properties	-
Loads	-
Nlgeo	$0,1,2$.
Status	Reliable

Table 42: LWedge element summary

Keyword	QWedge
Description	3D wedge six-node finite element with quadratic interpolation
Specific parameters	[NIP \# (in) ${ }^{\text {] }}$
Parameters	NIP: allows to alter the default integration formula (possible completions are 2 (default) and 9 point integration formulas).
Unknowns	Three dofs (u-displacement, v-displacement, wdisplacement) are required in each node.
Approximation	Quadratic approximation of displacements and geometry.
Integration	Full integration of all strain components using four point Gauss integration formula.
Features	-
CS properties	-
Loads	-
Nlgeo	0,1,2.
Status	Reliable

Table 43: QWedge element summary

2.9 Interface elements

Interface elements represents an interaction between points, edges or surfaces. They are used to model debonding between surfaces or more general fracture processes through the use of cohesive zone (cz) models. They can also be used to model contact between elements. Specific interface material models needs to be used - consult the matlibmanual for supported models.

Ordering convention: All inerface elements have plus-side and a minus-side and all nodes should first be specified for the minus-side and then the plus-side. The normal to the interface is defined to point from the minus-side to the-plus side. Direction of normal vector on an element specifies normal stress/cohesion across the element. It is assumed that normal jump, normal traction are at the first position of corresponding vectors. Stiffness matrix in local coordinates has always on position 1,1 normal stiffness and then shear stiffness.

2.9.1 IntEIPoint, Interface1d elements

Implementation of one dimensional (slip) interface element. This element connects two separate nodes and the interaction is governed by a one-dimensional slip law. This law determines the force acting between the nodes as a function on their relative displacement in the slip direction. The element can be used in 1D, 2D, and 3D (default) and its features are summarized in Table 44

Keyword Description Specific parameters	IntElPoint, Interface1d (deprecated) One dimensional (slip) interface element [refnode \#(in) $]$
Parameters	refnode: determines the reference node, which is used to specify a reference direction (the direction vector is obtained by subtracting the coordinates of the first node from the reference node). normal: The reference direction can be directly specified by the optional parameter normal. Although both refnode and normal are optional, at least one of them must be specified. One, two, or three DOFs (u-displacement, v-displacement, w-displacement) are required in each node, according to element mode (determined from domain type).
Unknowns	-
Approximation	-
Integration	-
Features	
CS properties	-
Loads	-
Nlgeo	0
Status	Reliable
Note	Element requires material model with _1dInterface support.

Table 44: IntElPoint element summary

2.9.2 IntEILine1, Interface2dlin elements

Implementation of a two dimensional line element with a linear approximation of the displacement jump. The element can be used to tie together two element edges and is defined by four nodes - two on each edge. Note that, the nodes along the interface are doubled, each couple with identical coordinates. Nodes on the negative side are numbered first, followed by nodes on the positive part. Requires material model with _2dInterface support. The element features are summarized in Table 45

Figure 21: Interface2dlin element with linear interpolation. Definition and node numbering convention

Keyword Description Specific parameters	IntElLine1, Interface2dlin(deprecated) 2D interface element with linear approximation [axisymmode \#()]
Parameters	axisymmode: Flag controlling axisymmetric mode (integra- tion over unit circumferential angle). Two dofs (u-displacement, v-displacement) are required in each node.
Unknowns	Linear approximation of displacements and geometry. Full integration of all strain components using two point integration formula.
Integration	-
Features	-
CS properties	-
Loads	0
Nlgeo	Reliable
Status	Element requires material model with _2dInterface support.
Note	

Table 45: IntElLine1 element summary

2.9.3 IntElLine2, Interface2dquad elements

Implementation of a two dimensional interface element with quadratic approximation of displacement field. Can be used to glue together two elements with quadratic displacement approximation along the shared edge. Note, that the nodes along the interface are doubled, each couple with identical coordinates. Nodes on the negative side are numbered first, followed by nodes on the positive part. Requires material model with _2dInterface support. The element features are summarized in Table 46

2.9.4 IntElSurfTr1, Interface3dtrlin elements

Implementation of a three dimensional interface element with linear approximation of displacement field. Can be used to glue together two elements with linear displacement approximation along the shared triangular surface. Note, that the nodes along the interface are doubled, each couple with identical coordinates. Nodes on the negative surface are numbered first, followed by nodes on the positive part. The numbering of surface nodes on positive surface $(+)$ determines the positive normal (right hand rule). Requires material model with _3dInterface support. The element features are summarized in Table 47

Figure 22: Interface2dquad element with quadratic interpolation. Definition and node numbering convention

Keyword	IntElLine2, Interface2dquad (deprecated)
Description Specific parameters	2D interface element with quadratic approximation [axisymmode \#0]
Parameters	axisymmode: Flag controlling axisymmetric mode (integration over unit circumferential angle).
Unknowns	Two dofs (u-displacement, v-displacement) are required in each node.
Approximation	Quadratic approximation of displacements and geometry.
Integration	Full integration of all strain components using four point integration formula.
Features	-
CS properties	-
Loads	-
Nlgeo	0
Status	Reliable
Note	Element requires material model with _2dInterface support.

Table 46: IntElLine2 element summary

Keyword	IntElSurfTr1, Interface3dtrlin (deprecated)
Description	3D interface element with linear approximation
Specific parameters	-
Unknowns	Three dofs (u-displacement, v-displacement, w-
	displacement) are required in each node.
Approximation	Linear approximation of displacements and geometry.
Integration	Full integration of all components using one point integration formula. Features
CS properties	-
Loads	-
Nlgeo	-
Status	0
Note	Reliable
	Element requires material model with _3dInterface support.

Table 47: IntElSurfTr1 element summary

Figure 23: Interface3dtrlin element with linear interpolation. Definition and node numbering convention

2.9.5 IntElSurfQuad1 element

Implementation of a three dimensional interface element with linear approximation of displacement field. Can be used to glue together two elements with linear displacement approximation along the shared quad surface. Note, that the nodes along the interface are doubled, each couple with identical coordinates. Nodes on the negative surface are numbered first, followed by nodes on the positive part. The numbering of surface nodes on positive surface $(+$) determines the positive normal (right hand rule). Requires material model with _3dInterface support. The element features are summarized in Table 48

Figure 24: IntElSurfQuad1 element with linear interpolation. Definition and node numbering convention

Keyword	IntElSurfQuad1
Description	3D interface element with linear approximation
Specific parameters	-
Unknowns	Three dofs (u-displacement, v-displacement, w- displacement) are required in each node. Approximation
Integration	Linear approximation of displacements and geometry.
	Full integration of all components using one point integration
fermula.	
Features	-
CS properties	-
Loads	-
Nlgeo	0
Status	Reliable
Note	Element requires material model with _3dInterface support.

Table 48: IntElSurfQuad1 element summary

2.10 Free warping analysis elements

2.10.1 TrWarp

Implements 2D linear triangular three-node finite element for FreeWarping analysis. Each node has 1 degree of freedom. The node numbering is anti-clockwise. The element features are summarized in Table 49

Keyword	TrWarp
Description	2D linear triangular warping element
Specific parameters	-
Unknowns	One dof (the value of deplanation function) is required in each node. Approximation
Integration Features	Linear approximation of displacements and geometry. Integration using one point gauss integration formula. This type of element is supported in FreeWarping analysis
CS properties	only. Only warpingCS is supported. Loads
Edge loads corresponding to free warping problem are gener- ated automatically. Additional edge loads are not supported.	
Status	0.
Note	-
	Test case: sm/freewarpingtest2.in

Table 49: TrWarp element summary

2.11 XFEM elements

XFEM elements allow simulations where the unknown fields are enriched through the partition of unity concept. Two elements are currently available for 2D XFEM simulations: TrPlaneStress2dXFEM (subclass of TrPlaneStress2d) and PlaneStress2dXfem (subclass of PlaneStress2d).

2.11.1 TrPlaneStress2dXFEM element

Keyword Description Specific parameters	TrPlaneStress2dXFEM Two dimensional 3-node triangular XFEM element [czmaterial \#(in) $]$ [nipcz \#(in) $]$ useplanestrain \#(in) $]$
Parameters	czmaterial: Interface material for the cohesive zone. (If no material is specified, traction free crack surfaces are assumed.) nipcz: Number of integration points used on each segment of the cohesive zone. useplanestrain: If plane strain or plane stress should be assumed. 0 implies plane stress and 1 implies plane strain. Two continuous (standard) DOFs (u-displacement, v- displacement) and a variable number of enriched DOFs (can be continuous or discontinuous).
Unknowns	-
Approximation	Elements cut by an XFEM interface are divided into subtri- angles.
Features	-
CS properties	-
Loads	-
Nlgeo	-
Status	-
Note	Test case: sm/xFemCrackVal.in

Table 50: TrPlaneStress2dXFEM element summary

2.11.2 PlaneStress2dXfem element

Keyword	PlaneStress2dXfem
Description	Two dimensional 4-node quad XFEM element
Specific parameters	[czmaterial \#(in)] [nipcz \#(in)][useplanestrain \#(in)]
Parameters	czmaterial: Interface material for the cohesive zone. (If no material is specified, traction free crack surfaces are assumed.) nipcz: Number of integration points used on each segment of the cohesive zone. useplanestrain: If plane strain or plane stress should be assumed. 0 implies plane stress and 1 implies plane strain.
Unknowns	Two continuous (standard) DOFs (u-displacement, vdisplacement) and a variable number of enriched DOFs (can be continuous or discontinuous).
Approximation	
Integration	Elements cut by an XFEM interface are divided into subtriangles.
Features	
CS properties	-
Loads	-
Nlgeo	-
Status	
Note	Test cases: $\mathrm{sm} / \mathrm{xFemCrackValBranch.in}$, $\mathrm{sm} / \mathrm{xfemCohesiveZone1.in}, \mathrm{benchmark/xfem01.in}$

Table 51: PlaneStress2dXfem element summary

2.12 Iso Geometric Analysis based (IGA) elements

The following record describes the common part of IGA element record:

```
*IGAElement (num\#)(in)
mat \#(in) crossSect \#(in) nodes \#(ia)
knotvectoru \#(ra) knotvectorv \#(ra) knotvectorw \#(ra)
[knotmultiplicityu \#(ia)] [knotmultiplicityv \#(ia)]
[knotmultiplicityw \#(ia)]
degree \#(ia) nip \#(ia)
\(\left\langle\left[\right.\right.\) partitions \#(ia) \(\left.\left.{ }^{\text {( }}\right\rangle\right\rangle\langle[\) remote \#(0) \(]\rangle\)
```

The knotvectoru, knotvectorv, and knotvectorw parameters specify knot vectors in individual parametric directions, considering only distinct knots. Open knot vector is always assumed, so the multiplicity of the first and last knot should be equal to $p+1$, where p is polynomial degree in coresponding direction (determined by degree parameter, see further).
The knot multiplicity can be set using optional parameters knotmultiplicityu, knotmultiplicityv, and knotmultiplicityw. By default, the open knot vector is assumed and multiplicity of internal knots is assumed to be equal to one. Note, that total number of knots in particular direction (including multiplicity) must be equal to number of control points in this direction increased by degree in this direction plus 1.
The degree of approximation for each parametric direction is determined from degree array, dimension of which is equal to number of spatial dimensions of the problem.
In case of elements with BSpline or Nurbs interpolation, the nodes forming the rectangular array of control points of the element are ordered in a such way, that u-index is changing most quickly, and w-index (or v-index in case of 2 d problems) most slowly. In case of elements with T-spline interpolation, the nodes forming the T-mesh of the element are ordered arbitrarily.

The supported *IGAElement values are following:
Keyword: bsplineplanestresselement
Parameters: None.
Keyword: nurbsplanestresselement
Parameters: None.
Keyword: nurbs3delement
Parameters: None.
Keyword: tsplineplanestresselement
Parameters: localindexknotvectoru \#(in) localindexknotvectorv \#(in) localindexknotvectorw \#(in) The parameters localindexknotvectoru, localindexknotvectorv, and localindexknotvectorw defined by the indices to global knot vectors (given by knotvectoru, knotvectorv, and knotvectorw parameters) specify the local knot vectors for each control point of T-mesh (node) in the same order as the nodes have been specified for the element. The local knot vector in a particular direction has $p+2$ entries, where the p is the polynomial degree in that direction.

2.13 Special elements

2.13.1 LumpedMass element

This element, defined by a single node, allows to introduce additional concentrated mass and/or rotational inertias in a node. A different mass and rotary inertia may be assigned to each coordinate direction. At present, individual mass/inertia components can be specified for every degree of freedom of element node. Only displacement and rotational degrees od freedom are considered. The element features are summarized in Table 52 .

Keyword Description Specific parameters	LumpedMass Lumped mass element components \#(ra)
Parameters	components: allows to specify additional concentrated mass components (Force* Time $^{2} /$ Length) and rotary inertias (Force*Length*Time 2) about the nodal coordinate axes. dofs: dofs to which the components apply.
Unknowns	As specified by dofs.
Approximation	-
Integration	-
Features	-
CS properties	-
Loads	-
Status	Reliable

Table 52: LumpedMass element summary

2.13.2 Spring element

This element represent longitudial or torsional spring element. It is defined by two nodes, orientation and a spring constant. The spring element has no mass associated, the mass can be added using LumpedMass element. The spring is linear and works the same way in tension or in compression. The element features are summarized in Table 53 .

Keyword Description Specific parameters	Spring Spring element mode \# ${ }_{(\mathrm{in})} \mathrm{k} \#_{(\mathrm{rn})}\left[\mathrm{m} \#_{(\mathrm{rn})}\right]$ orientation \#(ra)
Parameters	mode: defines the type of spring element (see Table 54). $\mathrm{k}: \quad$ determines the spring constant, corresponding units are [Force/Length] for longitudinal spring and
[Force*Length/Radian] for torsional spring.	
orientation:defines orientation vector of spring element	
(of size 3) - for longitudinal spring it defines the direction of	
spring, for torsional spring it defines the axis of rotation.	
$\mathrm{m}:$ determines optional mass of the element, zero value	
assumed by default.	
the spring element nodes doesn't need to be coincident, but	
the spring orientation is always determined by orientation	
vector.	

Table 53: Spring element summary

mode	description
0	1D spring element along x-axis, requires D_u DOF in each node, orientation vector is $\{1,0,0\}$
1	2D spring element in xy plane, requires D_u and D_v DOFs in each node (orientation vector should be in xy plane)
2	2D spring element in xz plane, requires D_u and D_w DOFs in each node (orientation vector should be in xz plane)
3	2D torsional spring element in xz plane, requires R_v DOFs in each node
4	3D spring element in space, requires D_u, D_v, and D_w DOFs in each node 3D torsional spring in space, requires R_u, R_v, and R_w DOFs in each node

Table 54: Supported spring element modes

nlgeo	strain tensor
0 (default)	Small-strain tensor
1	Green-Lagrange strain tensor
2	Deformation gradient

Table 55: Nonlinear geometry modes

2.14 Geometric nonlinear analysis

To take int account geometric nonlinearity for a specific element, the keyword nlgeo must be specified. The nlgeo parameter defines which formulation of the momentum balance is solved and what deformation measure that is computed and sent to the consitiutive models (see Table 55). If nlgeo=1, then the momentum balance is set up in the reference configuration in terms of the First Piola-Kirchhoff stress tensor \mathbf{P} and the deformation tensor \mathbf{F} as energy conjugates. This is also refered to a Total Lagrangian formulation. The balance equation in weak form reads

$$
\begin{equation*}
\int_{\Omega} \delta \mathbf{F}: \mathbf{P} \mathrm{d} \Omega=\int_{\Gamma} \delta \mathbf{x} \cdot \mathbf{t}_{P} \mathrm{~d} \Gamma+\int_{\partial \Omega} \delta \mathbf{x} \cdot \mathbf{b}_{P} \mathrm{~d} \Omega \tag{7}
\end{equation*}
$$

This equation can be rewritten in terms of the displacement \mathbf{u} and the displacement gradient \mathbf{H}

$$
\begin{equation*}
\int_{\Omega} \delta \mathbf{H}: \mathbf{P} \mathrm{d} \Omega=\int_{\Gamma} \delta \mathbf{u} \cdot \mathbf{t}_{P} \mathrm{~d} \Gamma+\int_{\partial \Omega} \delta \mathbf{u} \cdot \mathbf{b}_{P} \mathrm{~d} \Omega \tag{8}
\end{equation*}
$$

This equation is nearly identical to the one for small strains except that another stress measure is used and we have the virtual displacement gradient instead of the virtual strains.

The corresponding FE-formulation is obtained as

$$
\begin{equation*}
\int_{\Omega} \mathbf{B}_{H}^{\mathrm{T}} \cdot \mathbf{P} \mathrm{~d} \Omega=\int_{\Gamma} \mathbf{N}^{\mathrm{T}} \cdot \mathbf{t}_{P} \mathrm{~d} \Gamma+\int_{\partial \Omega} \delta \mathbf{N}^{\mathrm{T}} \cdot \mathbf{b}_{P} \mathrm{~d} \Omega \tag{9}
\end{equation*}
$$

with the tangent stiffness

$$
\begin{equation*}
\mathbf{K}_{\mathrm{T}}=\int_{\Omega} \mathbf{B}_{H}^{\mathrm{T}} \cdot \frac{\partial \mathbf{P}}{\partial \mathbf{F}} \cdot \mathbf{B}_{H} \mathrm{~d} \Omega \tag{10}
\end{equation*}
$$

Thus, for an element to support large deformations (in addition to small deformation) it needs only to implement the \mathbf{B}_{H} matrix. Similar to the regular \mathbf{B} matrix, which gives the strains in Voigt form when multiplied with the solution vector $\mathbf{a}, \mathbf{B}_{H}$ should give the displcement gradient in Voigt form with 9 components for a full 3D state.

3 Elements for Transport problems (TM Module)

3.1 2D Elements

3.1.1 Tr1ht element

Implements the linear triangular finite element for heat transfer problems. Each node has 1 degree of freedom. The cross section thickness property is requested form cross section model. The node numbering is anti-clockwise. The element features are summarized in Table 56

Figure 25: Tr1ht element - node and side numbering.

Keyword Description	Tr1ht triangular finite element with linear approximation for heat transfer problems		
Specific parameters	-		Unknowns
:---			
Approximation Integration Loads			
Lingle dof (T_f - temperature) is required in each node. Integration using one point gauss integration formula. Body loads are supported. Boundary loads are supported and are computed using numerical integration. The side numbering is following. Each i-th element side begins in i-th element node and ends on next element node (i+1-th node or 1-st node, in the case of side number 3). The local positive edge x-axis coincides with side direction, the positive local edge y-axis is rotated 90 degrees anti-clockwise (see fig. 25).			
Features CS properties - Status			

Table 56: Tr1ht element summary

3.1.2 $\operatorname{Tr} 1 m t$ element

Isoparametric triangular finite element with linear approximation of moisture. Other features are the same as for Tr1ht in Section 3.1.1

3.1.3 Tr1hmt element

Isoparametric triangular finite element with linear approximations of temperature and moisture. Other features are the same as for Tr1ht in Section 3.1.1.

3.1.4 Quad1ht element

Represents isoparametric four-node quadrilateral finite element for heat transfer problems. Each node has 1 degree of freedom. Problem should be defined in x, y plane. The cross section thickness property is requested form cross section model. The nodes should be numbered anti-clockwise (positive rotation around z-axis). The element features are summarized in Table 57.

Figure 26: Quad1ht element. Node numbering, Side numbering and definition of local edge c.s.(a).

Keyword	Quad1ht
Description	Isoparametric four-node quadrilateral linear interpolation element for heat transfer problems
Specific parameters	[NIP \# (in) ${ }^{\text {] }}$
Parameters	NIP: allows to change the default number of integration point used.
Unknowns	Single dof (T_f - temperature) is required in each node.
Approximation	Linear approximation of temperature.
Integration	Integration using gauss integration formula in 4 (the default), 9 , or 16 integration points. The default number of integration point used can be overloaded using NIP parameter.
Loads	Body loads are supported. Boundary loads are supported and computed using numerical integration. The side numbering is following. Each i-th element side begins in i-th element node and ends on next element node (i+1-th node or 1 -st node, in the case of side number 4). The local positive edge x -axis coincides with side direction, the positive local edge y-axis is rotated 90 degrees anti-clockwise (see fig. (26)).
Features	
CS properties	-

Table 57: Quad1ht element summary

3.1.5 Quad1mt element

Isoparametric four-node quadrilateral finite element. Other features are the same as for Quad1ht in Section 3.1.4.

3.1.6 Quad1hmt element

Represents isoparametric four-node quadrilateral finite element for heat and mass (one constituent) transport problems. Two dofs (T_f-temperature and C_1-concentration) are required in each node. Linear approximation of temperature and mass concentration. Other features are similar to Quad1 element, see section 3.1.4.

3.1.7 QQuad1ht element

Represents isoparametric quadratic eight-node quadrilateral finite element for heat transfer problems. Each node has 1 degree of freedom. Problem should be defined in x, y plane. The cross section thickness property is requested form the cross section model. The nodes should be numbered anti-clockwise (positive rotation around z-axis), see fig. 9. The element has the same features as in Table 57

3.1.8 QQuad1mt element

Element for mass transport problems, see the parent element in sec. 3.1.7.

3.1.9 QQuad1hmt element

Element for heat and mass transport problems, see the parent element in sec. 3.1.7.

3.2 Axisymmetric Elements

3.2.1 Quadaxisym1ht element

Isoparametric four-node quadrilateral finite element for axisymmetric heat transfer problems. The element description is similar to Quad1 element, see section 3.1.4.

3.2.2 Traxisym1ht element

Linear triangular finite element for axisymmetric heat transfer problems. The element description is similar to Tr1ht element, see section 3.1.1.

3.3 3D Elements

3.3.1 Tetrah1ht - tetrahedral 3D element

Represents isoparametric four-node tetrahedral element. Each node has 1 degree of freedom. The same numbering convection is adopted as in mechanics, see Fig. 17. The element features are summarized in Table 58 .
\(\left.$$
\begin{array}{|l|l|}\hline \begin{array}{l}\text { Keyword } \\
\text { Description }\end{array} & \begin{array}{l}\text { Tetrah1ht } \\
\text { Isoparametric, four-node tetrahedral element with linear } \\
\text { approximation for heat transfer problems }\end{array} \\
\text { Specific parameters } & \text { NIP \#(in) }]\end{array}
$$ \quad $$
\begin{array}{l}\text { NIP: allows to change the default number of integration } \\
\text { point used. } \\
\text { Single dof (T_f - temperature) is required in each node. } \\
\text { Unknowns } \\
\text { Approximation } \\
\text { Integration }\end{array}
$$ \quad \begin{array}{l}Linear approximation of temperature.

Integration using gauss integration formula in 1 (the default),

or 4 integration points. The default number of integration

point used can be overloaded using NIP parameter.

Body loads are supported. Boundary loads are supported

and computed using numerical integration. The side and

surface numbering is shown in Fig. 17.\end{array}\right]\)| Loads |
| :--- |
| Features |
| CS properties |
| Status |

Table 58: Tetrah1ht element summary

3.3.2 Brick1ht - hexahedral 3D element

Represents isoparametric eight-node brick/hexahedron finite element for heat transfer problems. Each node has 1 degree of freedom. The element features are summarized in Table 59

Figure 27: Brick1ht element. Node numbers are in black, side numbers are in blue, and surface numbers are in red.

Keyword Description	Brick1ht Isoparametric, hexahedral 3D element with linear approxi- mation for heat transfer problems
Specific parameters	[IP \#(in)]
Parameters	NIP: allows to change the default number of integration point used. Single dof (T.f - temperature) is required in each node. Unknowns Approximation Integration
Linear approximation of temperature. Integration using gauss integration formula in 8 (the default), or 27 integration points. The default number of integration point used can be overloaded using NIP parameter. Body loads are supported. Boundary loads are supported and computed using numerical integration. The side and surface numbering is shown in fig. (27).	
Loads	-
Features	
CS properties	-
Status	

Table 59: Brick1ht element summary

3.3.3 Brick1hmt - hexahedral 3D element

Represents isoparametric eight-node quadrilateral finite element for heat and mass (one constituent) transfer problems. Two dofs (T_f - temperature and C_1-concentration) are required in each node. Linear approximation of temperature and mass concentration. Other features are similar to Brick1 element, see section 3.3.2.

3.3.4 QBrick1ht - quadratic hexahedral 3D element

Implementation of quadratic 3d 20-node finite element. Each node has 1 degree of freedom. See section 2.8 .3 for node numbering order and order of faces. The element features are summarized in Table 60
$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { Keyword } \\ \text { Description }\end{array} & \begin{array}{l}\text { QBrick1ht } \\ \text { Isoparametric, hexahedral 3D element with quadratic ap- } \\ \text { proximation for heat transfer problems }\end{array} \\ \text { SpIP \#(in) }]\end{array} \left\lvert\, \begin{array}{l}\text { NIP: allows to change the default number of integration } \\ \text { Unknowns } \\ \text { Parameters } \\ \text { Approximation } \\ \text { Integration }\end{array} \quad \begin{array}{l}\text { Single dof (T_f - temperature) is required in each node. } \\ \text { Quadratic approximation of temperature and geometry.. } \\ \text { Integration using gauss integration formula in 8, 27 (default), } \\ \text { or 64 integration points. The default number of integration } \\ \text { point used can be overloaded using NIP parameter. }\end{array}\right.\right\}$

Table 60: QBrick1ht element summary

3.3.5 QBrick1mt - quadratic hexahedral 3D element

The same element as QBrick1ht for mass transfer problems, see 3.3.4. Linear approximation of mass concentration.

3.3.6 QBrick1hmt - quadratic hexahedral 3D element

The same element as QBrick1ht for heat and mass (one constituent) transfer problems. Two dofs (T_f temperature and C_1 - concentration) are required in each node. Linear approximation of temperature and mass concentration. Other features are similar to QBrick1ht element, see section 3.3.4.

4 Elements for Fluid Dynamics problems (FM Module)

4.1 Stokes' Flow Elements

Stokes' flow elements neglect acceleration, and thus requires no additional stabilization.

4.1.1 $\operatorname{Tr} 21 S t o k e s$ element

Standard 6 node triangular element for stokes flow, with quadratic geometry, velocity and linear pressure. Both compressible and incompressible material behavior is supported (and also the seamless transition between the two). The element features are summarized in Table 61 .
\(\left.\begin{array}{|l|l|}\hline Keyword \& Tr121Stokes

Description \& Standard 6 node triangular element for stokes flow, with

quadratic geometry, velocity and linear pressure\end{array}\right]\)| Specific parameters | - |
| :--- | :--- |
| Unknowns | Unknown pressure in nodes 1-3 with unknown velocity (V_u
 and V_v) in all 6 nodes.
 Quadratic approximation of geometry and velocity, linear
 pressure approximation. |
| Integration | - |
| Features
 Status | Reliable |

Table 61: Tr121Stokes element summary

4.1.2 Tet21Stokes element

Standard 10 node tetrahedral element for stokes flow, with quadratic geometry, velocity and linear pressure. The element features are summarized in Table 62,

Keyword	Tet21Stokes
Description	Standard 10 node tetrahedral element for stokes flow, with quadratic geometry, velocity and linear pressure
Specific parameters	-
Unknowns	Unknown pressure (P_f) in nodes 1-4, and unknown velocity (V_u, V_v, V_w) in all nodes.
Approximation	Quadratic approximation of geometry and velocity, linear pressure approximation.
Integration	
Features	-
Status	Untested

Table 62: Tet21Stokes element summary

4.1.3 Hexa21Stokes element

Standard 27 node hexahedral element for stokes flow, with quadratic geometry, velocity and linear pressure. The element features are summarized in Table 63 .

Figure 28: Hexa21Stokes element. Node numbering and face numbering.

Keyword	
Description	Hexa21Stokes Standard 10 node tetrahedral element for stokes flow, with quadratic geometry, velocity and linear pressure
Specific parameters	-
Unknowns	Unknown pressure (P_f) in nodes 1-8, and unknown velocity (V_u, V_-v, V_w) in all nodes. Quadratic approximation of geometry and velocity, linear pressure approximation.
Approximation	
Integration Features Status	-

Table 63: Hexa21Stokes element summary

4.1.4 $\operatorname{Tr} 1$ BubbleStokes element

So called "Mini" element in 2D. A 3 node triangular element for stokes flow, with linear geometry and pressure. Velocity is enriched by a bubble function. Should not be used with materials that have memory (which is uncommon for flow problems). The element features are summarized in Table 64 .

Keyword Description	Tr1BubbleStokes So called "Mini" 2D element
Specific parameters	-
Unknowns	Unknown pressure (P_f) in all nodes, and unknown velocity (V_u, V_v) in all nodes and one internal dof manager. Linear geometry and pressure. Velocity is enriched by a bubble function.
Approximation	-
Integration Ueatures Status	

Table 64: Tr1BubbleStokes element summary

4.1.5 Tet1BubbleStokes element

So called "Mini" element in 3D. A 4 node tetrahedral element for stokes flow, with linear geometry and pressure. Velocity is enriched by a bubble function. Should not be used with materials that have memory (which is
uncommon for flow problems). The element features are summarized in Table 65

Keyword Description Specific parameters	Tet1BubbleStokes So called "Mini" 3D element Unknowns
Unknown pressure (P_f) in all nodes, and unknown velocity (V_u, V_v) in all nodes and one internal dof manager.	
Approximation	Linear geometry and pressure. Velocity is enriched by a bubble function.
Integration Features Status	-

Table 65: Tet1BubbleStokes element summary

4.2 2D CBS Elements

4.2.1 $\operatorname{Tr} 1 \mathrm{CBS}$ element

Represents the linear triangular finite element for transient incompressible flow analysis using cbs algorithm with equal order approximation of velocity and pressure fields. Each node has 3 degrees of freedoms (two components of velocity and pressure). The node numbering is anti-clockwise. The element features are summarized in Table 66.

Figure 29: Tr1CBS element. Node numbering, Side numbering and definition of local edge c.s.(a).

Keyword	Tr1CBS
Description	linear triangular finite element for transient incompressible flow analysis using cbs algorithm
Specific parameters	[bsides \#(ia)] [bcodes \#(ia)]
Parameters	Since the problem formulation requires to evaluate some
	boundary terms, the element boundary edges should be
	specified as well as the types of boundary conditions applied
	at these boundary edges. The boundary edges (their num-
	bers) are specified using bsides array. The type of boundary condition(s) applied to corresponding boundary side
	is determined by bcodes array. The available/supported
	boundary codes are following: 1 for prescribed traction, 2
	for prescribed normal velocity, 4 for prescribed tangential
	velocity, and 8 for prescribed pressure. If the element side
	is subjected to a combination of these fundamental types
	boundary conditions, the corresponding code is obtained by summing up the corresponding codes.
Unknowns	Two velocity components (V_u and V_v) and pressure (P_f) are required in each node.
Approximation	Equal order approximation of velocity and pressure fields.
Integration	exact
Features	Constant boundary tractions are supported Body loads representing the self-weight load are supported.
Status	Untested

Table 66: Tr1CBS element summary

4.3 2D SUPG/PSGP Elements

4.3.1 $\operatorname{Tr} 1 S U P G$ element

Represents the linear triangular finite element for transient incompressible flow analysis using SUPG/PSPG stabilization with equal order approximation of velocity and pressure fields. Each node has 3 degrees of freedoms (two components of velocity and pressure). The node numbering is anti-clockwise. The element features are summarized in Table 67.

Figure 30: Tr1SUPG element. Node numbering, Side numbering and definition of local edge c.s.(a).

Keyword	Tr1SUPG
Description	linear triangular finite element for transient incompressible flow analysis using SUPG/PSPG algorithm
Specific parameters	[vof \#(rn) $]$ [pvof \#(rn) ${ }^{\text {a }}$
Unknowns	Two velocity components (V_u and V_v) and pressure (P_f) are required in each node.
Approximation Integration	Linear approximation of velocity and pressure fields. exact
Loads	Constant boundary tractions are supported. Body loads representing the self-weight load are supported.
Multi-fluid analysis	The element has support for solving problems with two immiscible fluids in a fixed spatial domain. In the present implementation, a VOF and LevelSet tracking algorithms are used to track the position of interface. In case of VOF tracking, an initial VOF fraction (volume fraction of reference fluid) can be specified using vof (default is zero). Element can also be marked as allways filled with reference fluid (some form of source) using parameter pvof which specifies the permanent VOF value. In case of LevelSet tracking, the initial levelset is specified using reference polygon (see corresponding levelset record in oofem input manual). The material model should be of type Keyword: twofluidmat, that supports modelling of two immiscible fluids.
Status	Reliable

Table 67: Tr1SUPG element summary

4.3.2 Tr21SUPG element

Implementation of P2P1 Taylor Hood element for transient incompressible flow analysis using SUPG and LSIC stabilization. It consists of globally continuous, piecewise quadratic functions for approximation in velocity space and globally continuous, piecewise linear functions for approximation in pressure space. LBB condition is
satisfied. There are 3 degrees of freedom in vertices (two components of velocity and pressure), and 2 degrees of freedom in edge nodes (two components of velocity only). The node numbering is anti-clockwise, vertices are numbered first. The element features are summarized in Table 68

Figure 31: Tr21SUPG element - node and side numbering.

Keyword Description Specific parameters	Tr21SUPG P2P1 Taylor Hood element Unknowns Approximation
Two velocity components (V_u and V_v) and pressure (P_f) in vertices and two velocity components (V_u and V_v) in edge nodes are required. Quadratic approximation of velocity and linear approxima- tion of pressure fields. Integration is exact, each submatrix of element stiffness matrix is evaluated in proper number of Gauss points. Sub- matrices connected with velocity are evaluated in 7 or 13 points, mixed velocity-pressure submatrices in 3 or 7 points, submatrices connected with pressure in 3 points. Constant boundary tractions are supported. Body loads representing the self-weight load are supported. The element has no support for solving problems with two immiscible fluids in a fixed spatial domain. Reliable	
Multi-fluid analysis	Status\quadLoads

Table 68: Tr21SUPG element summary

4.3.3 $\operatorname{Tr} 1 S U P G A x i$ element

Represents the linear triangular finite element for transient incompressible flow analysis using SUPG/PSPG stabilization with equal order approximation of velocity and pressure fields in 2 d -axisymmetric setting. Each node has 3 degrees of freedoms (two components of velocity and pressure). The y -axis is axis of ratational symmetry. The node numbering is anti-clockwise. The element features are summarized in Table 69

Figure 32: Tr1SUPGAxi element. Node numbering, Side numbering and definition of local edge c.s.(a).
$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { Keyword } \\ \text { Description } \\ \text { Specific parameters }\end{array} & \begin{array}{l}\text { Tr1SUPGAxi } \\ \text { linear equal order approximation axisymmetric element } \\ [\text { vof \#(rn) }] \text { [pvof \#(rn) }]\end{array} \\ \hline \text { Unknowns (V_u and V_v) and pressure (P_f) } \\ \text { Approximation } & \begin{array}{l}\text { Two velocity components (V_ } \\ \text { Integration } \\ \text { Loads required in each node. }\end{array} \\ \text { Multi-fluid analysis } \\ \text { Linear approximation of velocity and pressure fields. } \\ \text { Gauss integration in seven point employed. } \\ \text { Constant boundary tractions are supported. Body loads } \\ \text { representing the self-weight load are supported. } \\ \text { The element has support for solving problems with two } \\ \text { immiscible fluids in a fixed spatial domain. In the present } \\ \text { implementation, a VOF tracking algorithm is used to track } \\ \text { the position of interface. An initial VOF fraction (volume } \\ \text { fraction of reference fluid) can be specified using vof (default } \\ \text { is zero). Element can also be marked as always filled with } \\ \text { reference fluid (some form of source) using parameter pvof } \\ \text { which specifies the permanent VOF value. In this case, the } \\ \text { material model should be of type Keyword: twofluidmat, } \\ \text { that supports modelling of two immiscible fluids. }\end{array}\right\}$

Table 69: Tr1SUPGAxi element summary

4.4 3D SUPG/PSGP Elements

4.4.1 Tet1_3D_SUPG element

Represents 3D linear pyramid element for transient incompressible flow analysis using SUPG/PSPG stabilization with equal order approximation of velocity and pressure fields. Each node has 3 degrees of freedoms (two components of velocity and pressure). The element features are summarized in Table 70

Figure 33: Tet1_3D_SUPG element.

Keyword Description Specific parameters	TET1SUPG linear equal order approximation axisymmetric element $[$ vof \#(rn) $]$ pvof \#(rn) $]$
Unknowns	Three velocity components (V_u, V_v, and V_w) and pres- sure (P_f) are required in each node.
Approximation Integration Loads	Linear approximation of velocity and pressure fields. exact Constant boundary tractions are supported. Body loads representing the self-weight load are supported. The element has support for solving problems with two immiscible fluids in a fixed spatial domain. In the present implementation, a LevelSet tracking algorithm is used to track the position of interface. The material model should be of type Keyword: twofluidmat, that supports modelling of two immiscible fluids.
Status	

Table 70: TET1SUPG element summary

References

[1] R. D. Cook and D. S. Malkus and M. E. Plesha, "Concepts and Applications of Finite Element Analysis", Third Edition, isbn: 0-471-84788-7, 1989.
[2] Z. Bittnar and J. Sejnoha, "Numerical Methods in Structural Mechanics",Thomas Telford,isbn:9780784401705, 1996.
[3] R. Larsson and J. Mediavilla and M. Fagerström, "Dynamic fracture modeling in shell structures based on XFEM", International Journal for Numerical Methods in Engineering, vol. 86, no. 4-5, 499-527, 2011.
[4] P. Grassl and M. Jirásek, "Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension", International Journal of Solids and Structures, vol. 47, iss. 7-8, pp. 957-968, 2010..
[5] P. Grassl, J. Bolander, "Three-Dimensional Network Model for Coupling of Fracture and Mass Transport in Quasi-Brittle Geomaterials", Materials, 9, 782, 2016
[6] I. Athanasiadis, S. Wheeler and P. Grassl. "Hydro-mechanical network modelling of particulate composites", International Journal of Solids and Structures, vol. 130-131, pp. 49-60, 2018.
[7] P. Grassl and A. Antonelli. "3D network modelling of fracture processes in fibre-reinforced geomaterials", International Journal of Solids and Structures, vol. 156-157, Pages 234-242, 2019.

