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Chapter 1

Introduction and basic equations

1.1 Introduction

The aim of this document is to ducument the theoretical bacground of available solvers, elements, and models in
oofem. At present, this manual is a working document, covering only small portion of its capabilities.

1.1.1 Notation

Be Element strain-displacement matrix
C Elastic constitutive matrix
r Displacement vector
re Element displacement vector
r̂ Global displacement vector
K Stiffness matrix
Ne
i Element shape function

n Exterior unit normal vector
Γ Domain boundary
Γu Dirichlet boundary
Γt Neumann boundary
δij Kronecker symbol
ε Infinitesimal deformation tensor
ν POisson’s ratio
σ Cauchy stress tensor

Table 1.1: Table of symbols

1.2 Linear elasticity

1.2.1 Linear kinematics

Let us consider a deformable body as a collection of points, where position of each point is denoted as x ∈ Ω. In a
deformed configuration the position of each point is identified by its position vector xϕ(x) = φ(x). The displacement
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6 CHAPTER 1. INTRODUCTION AND BASIC EQUATIONS

Figure 1.1: Deformed configuration

vector is then defined as:
xϕ(x) = x+ u(x) (1.1)

Let us now examine the position in a local neighborhood of a point. The deformed position of such neighbor point
with coordinates x+ dx (where dxis infinitisemally small vector) is

xϕ(x+ dx) = x+ dx+ u(x+ dx) = xϕ + dxϕ

, where dxϕ is the mapping of vector dx onto deformed configuration, see Fig. 1.2.1. Taking into account the definition
of displacement vector 1.1 and using Taylor formula we get

dxϕ = x+ dx+ u(x+ dx)− xϕ = dx− u(x) + u(x+ dx) ≈ [I +∇u(x)]dx (1.2)

where ∇u(x) is the displacement gradient tensor (in small strain theory we assume ||∇u(x)|| � 1). The displacement
gradient tensor can be decomposed into symetric and antisymmetric parts

∇u = ε+ ω =
1

2
(∇u+∇uT ) +

1

2
(∇u−∇uT ) = ∇su+∇au

The antisymmetric part corresponds to infinitesimal rotation. The symmeric part of displacement gradient tensor is
therefore the measure of infinitesimal deformation

dxϕ = εdx

1.2.2 Equlibrium equations

Stress is defined as the force across a ”small” boundary per unit area of that boundary, for all orientations of the
boundary. In the most general case, called triaxial stress, the stress is nonzero across every surface element. Cauchy
observed that the stress vector t across a surface is a linear function of the surface’s normal vector n:

t(x) = σ(x)n(x)

where σ(x) is called the (Cauchy) stress tensor, completely describing the stress state at any point.
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Figure 1.2: Balance between tractions and stresses in 2D

The components of the Cauchy stress tensor at every point in a material satisfy the equilibrium equations (Cauchy’s
equlibrium equations). From the conservation of angular momentum follows the symmetry of the stress tensor.
Therefore, the stress state of the medium at any point and instant can be specified by only six independent parameters,
rather than nine. These may be written  σxx τxy τxz

τxy σyy τyz
τzx τzy σzz


where the elements σxx, σyy, σzz are called the normal stresses (relative to the chosen coordinate system), and
τyz, τxz, τxy the shear stresses.
In a static equlibrium, the Cauchy stress components in every material point satisfy the equilibrium equations, see ref-
fig:stressbalance

σji,j + Fi = 0 (1.3)

where we use summation convention over repated indices and Fi are the components of the body force. In a compact
tensorial notation we can write the above equation as

∇ · σ + Fi = 0 (1.4)

1.2.3 Constitutive equations

In this section we present the constituve relations (i.e. relations between stress and strain tensors) for the case
of hyperelasticity, which could be defined in terms of strain energy density W (ε), which allows to evaluate stress
components as partial derivatives:

σij =
∂ W

∂ εij

For example, the Hooke’s law is defined using following strain energy potential

W (ε) =
1

2
εijCijklεkl

where C is forth order elasticity tensor. The equality of mixed derivatives (
∂2W

∂ εijεkl2
=

∂2W

∂ εklεij2 ) and symmetry

of stress and strain tensors
∂ σij

∂ εkl
= Cijkl = Cjikl = Cijlk imply that there is in general maximum 21 independ

components of the elasticity tensor. In the simplest case, the elasticity tensor for isotropic linear elastic material can
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Figure 1.3: Stress balance in 2D

be described by only two parameters: either Lameś parameters (λ, µ) or more usual parametrs being Young’s modulus
E and Poisson’s ratio ν:

Cijkl = λδijδkl + 2µ
1

2
[δikδjl + δilδjk] ≡ C = λ1⊗ I + 2µI

1.2.4 Voight notation

The Voigt notation is hrequantly used to take advantage of the symmetry of the stress tensor to express the stress
tensor as a six-dimensional vector of the following form:

σ̃ = [σx, σy, σz, τyz, τxz, τxy]
T ≡ [σxx, σyy, σzz, τyz, τxz, τxy]

T

The strain tensor, similar in nature to the stress tensor (both symmetric second-order tensors) can be written in Voight
notation as

ε̃ = [εx, εy, εz, γyz, γxz, γxy]
T ≡ [εxx, εyy, εzz, 2εyz, 2εxz, 2εxy]

T

The benefit of using different representations for stress and strain is the scalar invariance

σ · ε = σijεij = σ̃ε̃

Similarly, a three-dimensional symmetric fourth-order tensor can be reduced to a [6,6] matrix.

1.2.5 Boundary value problem in small strain elasticity

Strong form

Starting from the equilibrium equations refeq:staticequlibrium3d, into which we can substitute the constituve equations
and strain-displacement relation we obtain the equlibrium equation expressed in terms of displacements:

∂

∂ xj

(
Cijkl

1

2
(
∂ uk
∂ xl

+
∂ ul
∂ xk

)

)
+ Fi = 0

This system of three partial differnetial equations can be solved, provided that appropriate boundary conditions are
given. In summary, the strong form is the following:



1.2. LINEAR ELASTICITY 9

Find u ∈ Rn, such that

∂

∂ xj

(
Cijkl

1
2 (
∂ uk
∂ xl

+
∂ ul
∂ xk

)

)
+ Fi = 0 ∈ Ω

u = ū ∈ Γu

tni = Cijkl
1
2 (
∂ uk
∂ xl

+
∂ ul
∂ xk

)nj = t̄i ∈ Γt

Weak form

By following the method of weighted residuals, we multiply the governing differential equations 1.4 in residual form
by a sutable test functions δu, satisfying the homogeneous boundary conditions on Γu∫

Ω

δu · (∇ · σ + F ) dΩ = 0

By applying the Green’s formula, we arrive at∫
Ω

∇δu · σ dΩ =

∫
Ω

δu · F dΩ +

∫
Γ

δu · σn dΓ

Then we can substitute for the stresses and tractions and taking into account the symmetry of stress tensor (σ = Cε)∫
Ω

∇sδu ·Cε dΩ =

∫
Ω

δu · F dΩ +

∫
Γ

δu · t dΓ (1.5)

Or, equaivalently using Voight’s notation∫
Ω

δε̃T D̃ε̃ dΩ =

∫
Ω

δuTF dΩ +

∫
Γ

δuT t dΓ (1.6)

Note: this is equaivalent to the principle of virtual displacements. For hyperelastic material, the weak form is identical
to the principle of minimum potential energy.

1.2.6 Finite element discretization

Let us consider discretization of the problem domain Ω into set of nonoverlapping subdomains Ωe, called elements.
Next we will consider the approximation of the unknown displacement field, defined on individual subdomains. Note
that the approximation is not arbitrary:

� The weak form kontains only first derivatives of the unknown and test functions, thus only C0 continuity is
required.

The element approxiamtion of the arbitrary function f has the form

f =
∑

Nj(x)rj = Nr

where Nj are so called shape or approximation functions and rj are nodal values. Note that for the approximation
functions to be interpolatory, the shape functions have to satisfy Kronecker-delta property, i.e., Nj(xi) = δij , where xi
is the position vector of the i-th node. Also, the shape functions have to satisfy the condition

∑
Ni = 1, which follows

from the requirement to approximate the constant function. The required continuity of element approximations have to
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be satisfied. This is typically achieved by enforcing the continuity at the nodal points. In our case, the approximation
of displacements and test functions is

ue = N e(x)re (1.7)

δut = N e(x)δre (1.8)

We will use the weak form 1.5, which using Voight’s notation has the form∫
Ω

∇sδu ·Cε dΩ =

∫
Ω

δu · F dΩ +

∫
Γ

δu · t dΓ

We will need also the derivatives of the displacement and test functions

ε̃e == Be(x)re (1.9)

δε̃e = Be(x)δre (1.10)

where Be matrix contains the first partial derivatives of the shape functions. By substiituting into the weak form 1.6
we obtain

∑
e

δre,T


∫

Ωe
Be,T D̃

e
Bere dΩ︸ ︷︷ ︸

Ke

re −
∫

Ω

N e,TF dΩ︸ ︷︷ ︸
f eΩ

−
∫

Γt

N e,T t̄ dΓ︸ ︷︷ ︸
f eΓ

 = 0 (1.11)

After introducing a mappig between element displacement vectors re, nodal vectors of test function values δr and
their global counterparts r̂, δr̂ one can obtain

δr̂T
[
K̂r̂ − f̂Ω − f̂Γ

]
= 0 (1.12)

By taking into account that the test fuctions are arbitrary (i.e. δr̂ 6= 0), one finnaly obtains the following set of linear
algebraic equations for unknonwn nodal displacements r̂:

K̂r̂ = f̂Ω + f̂Γ (1.13)



Chapter 2

Solution procedures

2.1 Solution procedures for nonlinear systems

We illustrate this on problem of nonlinear mechanics. Our starting point is general form of equilibrium equations
expressing the balance between internal f int and external fext

f int(r) = fext

Suppose we are looking for an equilibrium at the end of load increment ∆fext

f int(r + ∆r) = fext + ∆fext (2.1)

By the linearization of the nodal force vector around known equilibrium state we can obtain

f int(r) +
∂ f int

∂ r
∆r +O(‖∆r‖2) (2.2)

The derivative of internal force vector with respect to nodal displacements is called jacobian matrix and in solid
mechanics as tangent stiffness matrix. For the case of material non-linearity

fe,int(re) =

∫
Ωe
BTσ(ε(re)) dΩ⇒ ∂ fe,int

∂ de
=

∫
Ωe
BT ∂ σ

∂ ε

∂ ε

∂ re
dΩ =

∫
Ωe
BT ∂ σ

∂ ε
Bre dΩ =

∫
Ωe
BTDBre dΩ

2.1.1 Newton-Raphson method

The method is based on splitting of the loading process into series of subsequent incremental loading steps in which the
incremental loading vector ∆f is applied. We are looking for the equilibrium at the end of loading step 2.1 using the
iterative procedure outlined in 2.1. The algorithm is graphically outlined in Fig. 2.1.1 for a system with one unknown
and summarized in Table 2.2.

Based on update strategy for stiffness matrix, one can obtain different variants of the method. When the stiffness
matrixKi is updated in each iteration, the full Newton-Raphson method is obtained. When stiffness matrix only every
n-th iteration, one speaks about modified Newton-Raphson method. Finally, when the stiffness matrix is updated
only at the beginning of the loading step, one obtains so called initial stiffness method. For the full Newton-Raphson
method a quadratic convergence is obtained.

One can implement two blends of Newton-Raphson algorithm, where the loading can be driven by load control or by
displacement control, where the prescribed increments of displacements are applied to selected DOFs.

11



12 CHAPTER 2. SOLUTION PROCEDURES

Figure 2.1: Illustration of Newton-Raphson method

Given
fextn−1

fextn = fextn−1 + δfextn

r0
n = rn−1

Looking for rn, such that f int(rn) = fextn

Solve for i = 1, 2, · · ·
Kiδri = fextn − f intn (ri−1

n )
rin = ri−1

n + δri

Until ‖fextn − f intn (ri−1
n )‖ ≤ ε

Table 2.1: Newton-Raphson method

2.1.2 Arc-length method

We start by assuming the parametrized loading, in which the total external load vector is expressed as

fext(λ) = +λfextp

where fp is proportional, reference load vector, and λ is load scaling parameter, The arc-length method is based on
idea of controlling the length passed along the loading path. For the differential length of loading path we can write

∆l =
√

∆rT∆r + (c2∆λ2fTp fp) (2.3)

where c is coefficient of generalized metrics used to define ∆l (taking into account different units of displacement and
load). For selected increment of loading path length ∆l, we are looking for the equilibrium, where the unknowns are
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Figure 2.2: Illustration of Acr-length method

nodal displacements r and the load scaling parameter λ. We have the equilibrium equation and additional scalar
equation 2.3:

f int(rn) = fext(λnfp) (2.4)

∆l2n = ∆rTn∆rn + c2∆λ2fTp fp (2.5)

At the end of n-th loading step and i-th iteration the displacement vector can be written as rin = ri−1
n + δr and

similarly the load scaling parameter as λin = λi−1
n + δλ. Substituting this into equilibrium equation 2.4 we get

f int(ri−1
n + δr) = fext((λi−1

n + δλ)fp)

By linearization of F int around known state ri−1
n we get

f intn (ri−1
n ) +Ki−1

n δr = fext,i−1 + δλfp

and finally for unknown δr

δr = (Ki−1
n )−1(fext,i−1 − f int(ri−1

n ))︸ ︷︷ ︸
δrr

+δλ (Ki−1
n )−1fp︸ ︷︷ ︸
δrλ

(2.6)

Note that the vectors δrr and δrλ can be computed and the only unknown remaining is the incremental change of
loading parameter δλ, which could be determined from 2.5

∆l2n = (∆ri−1
n + δrr + δλδrλ)T (∆ri−1

n + δrr + δλδrλ) + c2(∆λi−1
n + δλ)2fTp fp (2.7)

This finally yields a quadratic equation for unknown increment of loading parameter δλ. The algorithm is summarized
in Table ??.



14 CHAPTER 2. SOLUTION PROCEDURES

Given
fextn−1,fp
r0
n = rn−1

Evaluate
δrλ = (Kn)−1fp

∆λ0 = ±∆l/
√
δrTλ δrλ + c2fTp fp

∆r0
n = (Kn)−1(∆λfp) = (Kn)−1((λn + ∆λ0)fp − f

int,0
n )

Repeat for i = 1, 2, · · ·
δrλ = (Ki−1

n )−1fp
δrr = (Ki−1

n )−1(λi−1
n fp − f

int(ri−1
n ))

Solve quadratic equation 2.7 for δλ
δri = δrr + δλδrλ
∆rin = ∆ri−1 + δri, rin = ri−1

n + δri

λi = λi−1 + δλ, ∆Λin = ∆Λi−1
n + δλ

Until convergence reached

Table 2.2: Newton-Raphson method

2.2 Non-stationary linear transport model

The weak form of diffusion-type differential equation leads to

Kr +C
dr

dt
= F , (2.8)

where the matrix K is a general non-symmetric conductivity matrix, C is a general capacity matrix and the vector
F contains contributions from external and internal sources. The vector of unknowns, r, can hold nodal values of
temperature, humidity, or concentration fields, for example.
Time discretization is based on a generalized trapezoidal rule. Let us assume that the solution is known at time t and
the time increment is ∆t. The parameter α ∈ 〈0, 1〉 defines a type of integration scheme; α = 0 results in an explicit
(forward) method, α = 0.5 refers to the Crank-Nicolson method, and α = 1 means an implicit (backward) method.
The appromation of solution vector and its time derivative yield

τ = t+ α∆t = (t+ ∆t)− (1− α)∆t, (2.9)

rτ = (1− α)rt + αrt+∆t, (2.10)

dr

dt
=

1

∆t
(rt+∆t − rt) . (2.11)

F τ = (1− α)F t + αF t+∆t, (2.12)

Let us assume that Eq. (2.8) should be satisfied at time τ . Inserting Eqs. (2.10)-(2.12) into Eq. (2.8) leads to[
αK +

1

∆t
C

]
rt+∆t =

[
(α− 1)K +

1

∆t
C

]
rt + (1− α)F t + αF t+∆t (2.13)

where the conductivity matrix K contains also a contribution from convection, since it depends on rt+∆t

K =

∫
Ω

BTλBdΩ +

∫
Γc

NThNdΓ︸ ︷︷ ︸
Convection

(2.14)
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The vectors F t or F t+∆t contain all known contributions

F t = −
∫

Γq

NT qtdΓ︸ ︷︷ ︸
Given flow

+

∫
Γc

NThT∞,tdΓ︸ ︷︷ ︸
Convection

+

∫
Ω

NTQtdΩ︸ ︷︷ ︸
Source

(2.15)

2.3 Non-stationary nonlinear transport model

In a nonlinear model, Eq. (2.8) is modified to

K(r)r +C(r)
dr

dt
= F (r), (2.16)

Time discretization is the same as in Eqs. (2.9)-(2.11) but the assumption in Eq. (2.15) is not true anymore. Let us
assume that Eq. (2.16) should be satisfied at time τ ∈ 〈t, t+ ∆t〉. By substituting of Eqs. (2.10)-(2.11) into Eq. (2.16)
leads to the following equation

[(1− α)rt + αrt+∆t]Kτ (rτ ) +

[
rt+∆t − rt

∆t

]
Cτ (rτ ) = F τ (rτ ). (2.17)

Eq. (2.17) is non-linear and the Newton method is used to obtain the solution. First, the Eq. (2.17) is transformed
into a residual form with the residuum vector Rτ , which should converge to the zero vector

Rτ = [(1− α)rt + αrt+∆t]Kτ (rτ ) +

[
rt+∆t − rt

∆t

]
Cτ (rτ )− F τ (rτ )→ 0. (2.18)

A new residual vector at the next iteration, Ri+1
τ , can determined from the previous residual vector, Ri

τ , and its
derivative simply by linearization. Since the aim is getting an increment of solution vector, ∆riτ , the new residual
vector Ri+1

τ is set to zero

Ri+1
τ ≈ Ri

τ +
∂Ri

τ

∂rt
∆riτ = 0, (2.19)

∆riτ = −
[
∂Ri

τ

∂rt

]−1

Ri
τ . (2.20)

Deriving Eq. (2.18) and inserting to Eq. (2.20) leads to

K̃
i

τ =
∂Ri

τ

∂rt
= −αKi

τ (r)− 1

∆t
Ci
τ (r), (2.21)

∆riτ = −
[
K̃
i

τ

]−1

Ri
τ , (2.22)

which gives the resulting increment of the solution vector ∆riτ

∆riτ = −
[
K̃
i

τ

]−1 {
[(1− α)rt + αrt+∆t]K

i
τ (rτ )+[

rt+∆t − rt
∆t

]
Ci
τ (rτ )− F τ (rτ )

}
,

(2.23)

and the new total solution vector at time t+ ∆t is obtained in each iteration

ri+1
t+∆t = rit+∆t + ∆riτ . (2.24)
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There are two options how to initialize the solution vector at time t+∆t. While the first case applies linearization with
a known derivative, the second case simply starts from the previous solution vector. The second method in Eq. (2.26)
is implemented in OOFEM.

r0
t+∆t = rt + ∆t

∂rt
∂t

, (2.25)

r0
t+∆t = rt. (2.26)

Note that the matrices K(rτ ),C(rτ ) and the vector F (rτ ) depend on the solution vector rτ . For this reason, the
matrices are updated in each iteration step (Newton method) or only after several steps (modified Newton method).
The residuumRi

τ and the vector F τ (rτ ) are updated in each iteration, using the most recent capacity and conductivity
matrices.

2.3.1 Heat flux from radiation

Heat flow from a body surrounded by a medium at a temperature T∞ is governed by the Stefan-Boltzmann Law

q(T, T∞) = εσ(T 4 − T 4
∞) (2.27)

where ε ∈ 〈0, 1〉 represents emissivity between the surface and the boundary at temperature T∞. σ = 5.67 · 10−8

W/m−2K−4 stands for a Stefan-Boltzmann constant. Transport elements in OOFEM implement Eq. (2.27) and
require non-linear solver.
Alternatively (not implemented), a linearization using Taylor expansion around T∞ and neglecting higher-order terms
results to

q(T, T∞) ≈ q(T = T∞) +
∂q(T, T∞)

∂T∞
(T∞ − T ) = 4εσT 3

∞(T − T∞) (2.28)

leading to so-called radiation heat transfer coefficient αrad = 4εσT 3
∞. The latter resembles similar coefficient as in

convective heat transfer. Other methods for Eq. (2.27) could be based on Oseen or Newton-Kantorovich linearization.
Also, radiative heat transfer coefficient αrad can be expressed as [?, pp.28]

q(T, T∞) = εσ
T 4 − T 4

∞
T − T∞

(T − T∞) = εσ(T 2 + T 2
∞)(T + T∞)︸ ︷︷ ︸
αrad

(T − T∞) (2.29)

2.4 Transient incompressible flow - Lagrangian Particle Method

2.4.1 Lagrangian governing equations of incompressible fluid

The Particle finite element method (PFEM) is based on the Lagrangian form of the Navier-Stokes equation for
incompressible Newtonian fluids. Assuming the density does not change in time for an incompressible fluid, the
continuity equation reduces to zero requirements for the divergence of the velocity. The Navier-Stokes equations take
the form

ρ
∂ u

∂ t
= ρb+∇ · σ , (2.30)

∇ · u = 0 . (2.31)

For the deviatoric stress in Newtonian fluids a linear dependency of stress tensor and strain rate tensor is adopted and
for the Newtonian fluids. Considering the incompressibility of the fluid, the Cauchy stress reads

σ = −pI + 2µ∇su . (2.32)
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This equation is known as Stokes’ law and its Cartesian form writes

σij = −pδij + µ

(
∂ ui
∂ xj

+
∂ uj
∂ xi

)
. (2.33)

Substituting the expression of Cauchy stress from Stokes’ law (2.32) into the momentum equation (2.30) and rewriting
gives

ρ
∂ u

∂ t
= ρb+ µ∇2u−∇p . (2.34)

The governing equations of the mass (2.31) and momentum conservation (2.34) form can be written in the Cartesian
form for the individual component i using Einstein summation convention

ρ
∂ ui
∂ t

= − ∂

∂xi
p+ µ

∂

∂xj

(
∂ui
∂xj

)
+ ρbi , (2.35)

∂ ui
∂ xi

= 0 . (2.36)

The equations are accompanied by a set of standard boundary conditions imposed on the complementary parts of the
domain boundary

τijνj − pνi = σ̄ni on Γσ , (2.37)

uiνi = ūn on Γn , (2.38)

uiζi = ūt on Γt , (2.39)

where ν or n denotes the normal direction to the boundary and ζ or t the tangential one. The bar sign over a quantity
x̄ stands for its prescribed value.

2.4.2 Time discretization

For the time discretization of the momentum equation, a general trapezoid rule can be adopted. Using this rule, the
time derivative of a generic function φ can be approximated by following equation

[φ(x, t)]n+θ = θφ(x, tn+1) + (1− θ)φ(x, tn) = θφn+1 + (1− θ)φn . (2.40)

Rewriting the time derivative on the left hand side of the momentum balance (2.35) as a finite difference in time and
applying the trapezoidal rule on the right hand side, we obtain

ρ
∂ ui
∂ t
≈ ρu

n+1
i − uni

∆t
=

[
− ∂

∂xi
p+ µ

∂

∂xj

(
∂ui
∂xj

)
+ ρbi

]n+θ

. (2.41)

The parameter θ can take values from the interval [0, 1]. The approximation is considered as a weighted average of
the derivative values in the time step n and n+ 1. Using a specific value of the θ parameter, well-known methods can
be recovered: The explicit Euler method θ = 0, the backward Euler for θ = 1 or the Crank-Nicolson method θ = 1/2.
The current implemantation of PFEM allows the use of explicit and backward (implicit) method.

2.4.3 Fractional step scheme

Beside the three velocity components, the discretized momentum balance equations (2.41) for a three dimensional case
includes pressure as a coupling variable. A possible approach to decouple them is the application of so-called fractional
step method. The main idea of this method consists in introducing an intermediate velocity as supplementary variable
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and splitting the momentum equation. The modification introduced by R.Codina [?] splits the the discretized time
step is split into two sub-steps. The implicit part of the pressure is avoided and assigned to the second step.

∂ ui
∂ t
≈ un+1

i − uni
∆t

=
un+1
i − u∗i + u∗i − uni

∆t
=

[
−1

ρ

∂

∂xi
p+

µ

ρ

∂

∂xj

(
∂ui
∂xj

)
+ bi

]n+θ

. (2.42)

where the intermediate velocity u∗i is introduced. Splitting the equation in the following manner gives the expression
for the unknown velocities

u∗i = uni + bi∆t−
∆t

ρ

∂

∂ xi
γpn +

∆tµ

ρ

∂

∂ xj

(
∂ un+θ

i

∂ xj

)
, (2.43)

un+1
i = u∗i −

∆t

ρ

∂

∂ xi
(pn+1 − γpn) . (2.44)

The pressure split is here introduced by the new parameter γ defining the amount of splitting and can take values
from 0 to 1. The body loads are considered to be constant over time step.
In a similar way, the fractional step method is applied on the mass conservation equation. Here, the time derivative
of density would be approximated. As we examine an incompressible flow, whose density does not change in time,
merely the intermediate velocity term is incorporated in the divergence of the velocity.

∂ (un+1
i − u∗i + u∗i )

∂ xi
= 0 , (2.45)

which can be decomposed into two sub-equations

∂ u∗i
∂ xi

= 0 (2.46)

∂ (un+1
i − u∗i )
∂ xi

= 0 . (2.47)

By substituting for the velocity difference into the equation (2.44) we obtain

∂

∂ xi
(un+1
i − u∗i ) =

∂

∂ xi

(
−∆t

ρ

∂

∂ xi
(pn+1 − γpn)

)
. (2.48)

Now we can sum the separated mass equations together. This operation gives the coupled mass-momentum equation

∂ u∗i
∂ xi

− ∆t

ρ

∂2

∂x2
i

(pn+1 − γpn) = 0 . (2.49)

The final set of equations reads

u∗i = uni + bi∆t−
∆t

ρ

∂

∂ xi
γpn +

∆tµ

ρ

∂

∂ xj

(
∂ un+θ

i

∂ xj

)
, (2.50)

∂2

∂x2
i

(pn+1) =
ρ

∆t

∂ u∗i
∂ xi

+
∂2

∂x2
i

(γpn) , (2.51)

un+1
i = u∗i −

∆t

ρ

∂

∂ xi
(pn+1 − γpn) . (2.52)

The above PFEM formulation is based on the paper by Idelsohn, Oñate and Del Pin [?]. The authors described an
approach using arbitrary time discretization scheme and pressure split factor. Their choice of implicit scheme θ = 1
was motivated by better convergence properties, whereas the decision for γ = 0 leading to greater pressure split was
driven by better pressure stabilization.
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2.4.4 Spatial discretization

The unknown functions of velocity and pressure are approximated using equal order interpolation for all variables in
the final configuration

ui = NT (X, t)U i (2.53)

p = NT (X, t)P . (2.54)

By applying the Galerkin weighted residual method on the splitted governing equations, following system of linear
algebraic equations is obtained

MU∗ = MUn + ∆tF − ∆tµ

ρ
KUn+θ , (2.55)

LP n+1 =
ρ

∆t

(
GTU∗ − Û

)
, (2.56)

MUn+1 = MU∗ − ρ

∆t
GP n+1 . (2.57)

The matrix M denotes the mass matrix in a lumped form, whereas the vector F stands for the load vector. The
matrix G represents the gradient operator, which is the transposition of the divergence operator denoted simply as
GT . Matrices K and L are build in a similar way however noted differently. Both mean the Laplacian operator. Due
to its common use in computational mechanics, the classical notation of the stiffness matrix K is used. Prescribed
velocity components are enclosed in vector Û .
In each computational time step, an iteration is performed until the equilibrium is reached. Depending on the value
of θ used, the equation system for the components of the auxiliary velocity U∗i (2.55) can be solved either explicitly
θ = 0 or implicitly θ 6= 0. Then, the calculated values of the auxiliary velocity are used as input for the pressure
computation (2.56). The last system of equations (2.57) determines the velocity values at the end of the time step,
taking auxiliary velocities and pressure or pressure increments into account.
Let us summarize the iterative step. The position of the particles at the end of the previous time step is known, as
well as the the value of the velocity un and pressure pn. The set of governing equations is build up for the unknowns
at the end of the solution step θn+1, however based on the geometry of the previous step. The changes in the position
are neglected. Once the convergence is reached, the final position is computed from the old one modified by the
displacement due to obtained velocity. After that, solution can proceed to the next time step.
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Chapter 4

Constitutive Equations

The purpose of this chapter is to present the theoretical backgroung of some handy general purpose theories and
algorithms, that are provided in oofem in the form of general material base classes. They can significantly facilitate
the implementation of particular material models that are based on such concepts. Typical example can be a general
purpose plasticity class, that implements general stress return and stifness matrix evaluation algorithms, based on
provided methods for computing yield functions and corresponding derivatives. Particular models are simply derived
from the base classes, inheriting common algorithms.

4.1 Isotropic damage model

In this section, the formulation of an isotropic damage model will be described. To cover the various models based
on isotropic damage concept, a base class IsotropicDamageMaterial is defined first, declaring the necessary services
and providing the implementation of them, which are general. The derived classes then only implement a particular
damage-evolution law.
The isotropic damage models are based on the simplifying assumption that the stiffness degradation is isotropic, i.e.,
stiffness moduli corresponding to different directions decrease proportionally and independently of direction of loading.
Consequently, the damaged stiffness matrix is expressed as

D = (1− ω)De,

where De is elastic stiffness matrix of the undamaged material and ω is the damage parameter. Initially, ω is set to
zero, representing the virgin undamaged material, and the response is linear-elastic. As the material undergoes the
deformation, the initiation and propagation of microdefects decreases the stiffness, which is represented by the growth
of the damage parameter ω. For ω = 1, the stiffness completely disappears.
In the present context, the D matrix represents the secant stiffness that relates the total strain to the total stress

σ = Dε = (1− ω)Deε.

Similarly to the theory of plasticity, a loading function f is introduced. In the damage theory, it is natural to work
in the strain space and therefore the loading function is depending on the strain and on an additional parameter κ,
describing the evolution of the damage. Physically, κ is a scalar measure of the largest strain level ever reached. The
loading function usually has the form

f(ε, κ) = ε̃(ε)− κ,
where ε̃ is the equivalent strain, i.e., the scalar measure of the strain level. Damage can grow only if current state
reaches the boundary of elastic domain (f = 0). This is expressed by the following loading/unloading conditions

f ≤ 0, κ̇ ≥ 0, κ̇f = 0.

23
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It remains to link the variable κ to the damage parameter ω. As both κ and ω grow monotonically, it is convenient
to postulate an explicit evolution law

ω = g(κ).

The important advantage of this explicit formulation is that the stress corresponding to the given strain can be
evaluated directly, without the need to solve the nonlinear system of equations. For the given strain, the corresponding
stress is computed simply by evaluating the current equivalent strain, updating the maximum previously reached
equivalent strain value κ and the damage parameter and reducing the effective stress according to σ = (1− ω)Deε.
This general framework for computing stresses and stiffness matrix is common for all material models of this type.
Therefore, it is natural to introduce the base class for all isotropic-based damage models which provides the general
implementation for the stress and stiffness matrix evaluation algorithms. The particular models then only provide their
equivalent strain and damage evolution law definitions. The base class only declares the virtual services for computing
equivalent strain and corresponding damage. The implementation of common services uses these virtual functions,
but they are only declared at IsotropicDamageMaterial class level and have to be implemented by the derived classes.
Together with the material model, the corresponding status has to be defined, containing all necessary history variables.
For the isotropic-based damage models, the only history variable is the value of the largest strain level ever reached
(κ). In addition, the corresponding damage level ω will be stored. This is not necessary because damage can be always
computed from corresponding κ. The IsotropicDamageMaterialStatus class is derived from StructuralMaterialStatus
class. The base class represents the base material status class for all structural statuses. At StructuralMaterialStatus
level, the attributes common to all “structural analysis” material models - the strain and stress vectors (both the
temporary and non-temporary) are introduced. The corresponding services for accessing, setting, initializing, and
updating these attributes are provided. Therefore, only the κ and ω parameters are introduced (both the temporary
and non-temporary). The corresponding services for manipulating these attributes are added and services for context
initialization, update, and store/restore operations are overloaded, to handle the history parameters properly.

4.2 Multisurface plasticity driver - MPlasticMaterial class

In this section, a general multisurface plasticity theory with hardening/softening is reviewed. The presented algorithms
are implemented in MPlasticMaterial class.

4.2.1 Plasticity overview

Let σ, ε, and εp be the stress, total strain, and plastic strain vectors, respectively. It is assumed that the total strain
is decomposed into reversible elastic and irreversible plastic parts

ε = εe + εp (4.1)

The elastic response is characterized in terms of elastic constitutive matrix D as

σ = Dεe = D(ε− εp) (4.2)

As long as the stress remains inside the elastic domain, the deformation process is purely elastic and the plastic strain
does not change. It is assumed that the elastic domain, denoted as IE is bounded by a composite yield surface. It is
defined as

IE = {(σ,κ)|fi(σ,κ) < 0, for all i ∈ {1, · · · ,m}} (4.3)

where fi(σ,κ) are m ≥ 1 yield functions intersecting in a possibly non-smooth fashion. The vector κ contains internal
variables controlling the evolution of yield surfaces (amount of hardening or softening). The evolution of plastic strain
εp is expressed in Koiter’s form. Assuming the non-associated plasticity, this reads

ε̇p =

m∑
i=1

λi∂σgi(σ,κ) (4.4)
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where gi are plastic potential functions. The λi are referred as plastic consistency parameters, which satisfy the
following Kuhn-Tucker conditions

λi ≥ 0, fi ≤ 0, and λifi = 0 (4.5)

These conditions imply that in the elastic regime the yield function must remain negative and the rate of the plastic
multiplier is zero (plastic strain remains constant) while in the plastic regime the yield function must be equal to zero
(stress remains on the surface) and the rate of the plastic multiplier is positive. The evolution of vector of internal
hardening/softening variables κ is expressed in terms of a general hardening/softening law of the form

κ̇ = κ̇(σ,λ) (4.6)

where λ is the vector of plastic consistency parameters λi.

4.2.2 Closest-point return algorithm

Let us assume, that at time tn the total and plastic strain vectors and internal variables are known

{εn, εpn,κn} given at tn

By applying an implicit backward Euler difference scheme to the evolution equations (4.2 and 4.4) and making use of
the initial conditions the following discrete non-linear system is obtained

εn+1 = εn + ∆ε (4.7)

σn+1 = D(εn+1 − εpn+1) (4.8)

εpn+1 = εpn +
∑

λi∂σgi(σn+1,κn+1) (4.9)

In addition, the discrete counterpart of the Kuhn-Tucker conditions becomes

fi(σn+1,κn+1) = 0 (4.10)

λin+1 ≥ 0 (4.11)

λin+1fi(σn+1,κn+1) = 0 (4.12)

In the standard displacement-based finite element analysis, the strain evolution is determined by the displacement
increments computed on the structural level. The basic task on the level of a material point is to evaluate the stress
evolution generated by strain history. According to this, the strain driven algorithm is assumed, i.e. that the total
strain εn+1 is given. Then, the Kuhn-Tucker conditions determine whether a constraint is active. The set of active
constraints is denoted as Jact and is defined as

Jact = {β ∈ {1, · · · ,m}|fβ = 0 & ḟβ = 0} (4.13)

Let’s start with the definition of the residual of plastic flow

Rn+1 = −εpn+1 + εpn +
∑
j∈Jact

λjn+1∂σgn+1 (4.14)

By noting that total strain εn+1 is fixed during the increment we can express the plastic strain increment using (4.2)
as

∆εpn+1 = −D∆σn+1 (4.15)

The linearization of the plastic flow residual (4.14) yields1

R+D−1∆σ +
∑

λ∂σσg∆σ +

+
∑

λ∂σκg · (∂σκ∆σ + ∂λκ∆λ) +
∑

∆λ∂σg = 0 (4.16)

1For brevity, the simplified notation is introduced: f = f(σ,κ), g = g(σ, κ), κ = κ(σ, λ), and subscript n+ 1 is omitted.
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From the previous equation, the stress increment ∆σ can be expressed as

∆σ = −H−1
(
R+

∑
∆λ∂σg +

∑
λ∂σκg∂λκ∆λ

)
(4.17)

where H is algorithmic moduli defined as

H =
[
D−1 +

∑
λ∂σσg +

∑
λ∂σκg∂σκ

]
(4.18)

Differentiation of active discrete consistency conditions (4.10) yields

f + ∂σf∆σ + ∂κf(∂σκ∆σ + ∂λκ∆λ) = 0 (4.19)

Finally, by combining equations (4.17) and (4.19), one can obtain expression for incremental vector of consistency
parameters ∆λ [

V TH−1U − ∂κf∂λκ
]

∆λ = f − V TH−1R (4.20)

where the matrices U and V are defined as

U =
[
∂σg +

∑
λ∂σκg∂λκ

]
(4.21)

V = [∂σf + ∂κf∂σκ] (4.22)

Before presenting the final return mapping algorithm, the algorithm for determination of the active constrains should
be discussed. A yield surface fi,n+1 is active if λin+1 > 0. A systematic enforcement of the discrete Kuhn-Tucker
condition (4.10), which relies on the solution of return mapping algorithm, then serves as the basis for determining
the active constraints. The starting point in enforcing (4.10) is to define the trial set

J trialact = {j ∈ {1, · · · ,m}|f trialj,n+1 > 0} (4.23)

where Jact ⊆ J trialact . Two different procedures can be adopted to determine the final set Jact. The conceptual procedure
is as follows

� Solve the closest point projection with Jact = J trialact to obtain final stresses, along with λin+1, i ∈ J trialact .

� Check the sign of λin+1. If λin+1 < 0, for some i ∈ J trialact , drop the i−th constrain from the active set and goto
first point. Otherwise exit.

In the procedure 2, the working set J trialact is allowed to change within the iteration process, as follows

� Let J
(k)
act be the working set at the k-th iteration. Compute increments ∆λ

i,(k)
n+1 , i ∈ J

(k)
act .

� Update and check the signs of ∆λ
i,(k)
n+1 . If ∆λ

i,(k)
n+1 < 0, drop the i-th constrain from the active set J

(k)
act and restart

the iteration. Otherwise continue with next iteration.

If the consistency parameters ∆λi can be shown to increase monotonically within the return mapping algorithm, the
the latter procedure is preferred since it leads to more efficient computer implementation.

The overall algorithm is convergent, first order accurate and unconditionally stable. The general algorithm is summa-
rized in Tab. 4.2.2.
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1. Elastic predictor

(a) Compute Elastic predictor (assume frozen plastic flow)
σtrialn+1 = D (εn+1 − εpn)
f triali,n+1 = fi(σ

trial
n+1 ,κn), for i ∈ {1, · · · ,m}

(b) Check for plastic processes IF f triali,n+1 ≤ 0 for all i ∈ {1, · · · ,m} THEN:

Trial state is the final state, EXIT.

ELSE:

J
(0)
act = {i ∈ {1, · · · ,m}|f triali,n+1 > 0}
ε
p(0)
n+1 = εpn, κ

(0)
n+1 = κn, λ

i(0)
n+1 = 0

ENDIF

2. Plastic Corrector

(c) Evaluate plastic strain residual

σ
(k)
n+1 = D

(
εn+1 − εp(k)n+1

)
R

(k)
n+1 = −εp(k)n+1 + εpn +

∑
λ
i(k)
n+1∂σgi

(d) Check convergence

f
(k)
i,n+1 = fi(σ

(k)
n+1,κ

(k)
n+1)

if f
(k)
i,n+1 < TOL, for all i ∈ J(k)

act and ‖R(k)
n+1‖ < TOL then EXIT

(e) Compute consistent moduli

G =
[
V TH−1U − ∂κf∂λκ

]−1

(f) Obtain increments to consistency parameter

∆λ
(k)
n+1 = G{f − V TH−1R}(k)n+1

If using procedure 2 to determine active constrains, then update the active set and restart iteration if necessary

(g) Obtain increments of plastic strains and internal variables

∆ε
p(k)
n+1 = D−1

{
R

(k)
n+1 +

∑
∆λ

i(k)
n+1∂σg

(k)
n+1 +

∑
λ
i(k)
n+1∂σκg

(k)
n+1∂λκ∆λ

i(k)
n+1

}
∆κ

(k)
n+1 = κ̇(σ(k)n+1 ,λkn+1)

(h) Update state variables

ε
p(k+1)
n+1 = ε

p(k)
n+1 + ∆ε

p(k)
n+1

κ
(k+1)
n+1 = κ

(k)
n+1 + ∆κ

(k)
n+1

λ
i(k+1)
n+1 = λ

i(k)
n+1 + ∆λ

(k)
n+1, i ∈ Jact

(i) Set k=k+1 and goto step (b)

Table 4.1: General multisurface closest point algorithm
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4.2.3 Algorithmic stiffness

Differentiation of the elastic stress-strain relations (4.8) and the discrete flow rule (4.9) yields

dσn+1 = D
(
dεn+1 − dεpn+1

)
(4.24)

dεpn+1 =
∑(

λi∂σσgdσ + λi∂σκg
(
∂σκdσ + ∂λκdλ

i
)

+ dλi∂σg
)

(4.25)

Combining this two equations, one obtains following relation

dσ = Ξn+1

{
dεn+1 −

∑
λi∂σκg∂λκdλ

i −
∑

dλi∂σg
}

(4.26)

where Ξn+1 is the algorithmic moduli defined as

Ξn+1 =
[
D−1 +

∑
λi∂σσg +

∑
λ∂σκg∂σκ

]
(4.27)

Differentiation of discrete consistency condition yields

∂σf
idσ + ∂κf

i(∂σκdσ + ∂λκdλ) = 0 (4.28)

By substitution of (4.26) into (4.28) the following relation is obtained

dλ = G {V Ξdε} (4.29)

where matrix G is defined as

G =
[
V TΞU − ∂κf∂λκ

]−1

(4.30)

Finally, by substitution of (4.30) into (4.26) one obtains the algorithmic elastoplastic tangent moduli

dσ

dε
|n+1 = Ξ−ΞU (V ΞU − [∂κf ][∂λκ])V Ξ (4.31)

4.2.4 Implementation of particular models

As follows from previous sections, a new plasticity based class has to provide only some model-specific services. The list
of services, that should be implemented includes (for full reference, please consult documentation of MPlasticMaterial
class):

� method for computing the value of yield function (computeYieldValueAt service)

� method for computing stress gradients of yield and load functions (method computeStressGradientVector)

� method for computing hardening variable gradients of yield and load functions (method computeKGradientVec-
tor)

� methods for computing gradient of hardening variables with respect to stress and plastic multipliers vectors
(computeReducedHardeningVarsSigmaGradient and computeReducedHardeningVarsLamGradient methods)

� method for evaluating the increments of hardening variables due to reached state (computeStrainHardening-
VarsIncrement)

� methods for computing second order derivatives of load and yield functions (computeReducedSSGradientMatrix
and computeReducedSKGradientMatrix methods). Necessary only if consistent stiffness is required.



Chapter 5

Boundary conditions
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